
SECURITY F iON F-TI415PAGE

Form Approved
:UMENTATION PAGE o.0ppro0e8

217 447 lb. RESTRICTIVE MARKINGS NONE

2, AD3. DISTRIBUTION/AVAILABILITY OF REPORT
7_ APPROVED FOR PUBLIC RELEASE;

21 uJVVRADING SCHEDULE DISTRIBUTION UNLIMITED.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/CI/CIA- 89-009

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
AFIT STUDENT AT MISSISSIPP. (if applicable) AFIT/CIA
SWIE UNIVFRSITY

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Wright-Patterson AFB OH 45433-6583

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. IACCESSION NO.

11. TITLE (Include Security Classification) (UNCLASSIFIEP)
Standardization of PXRAM AGE - NLerical Grid Generation Svster

12. PERSONAL AUTHORJS)

Agusto Martinez
13a. TYPE OF REPORT j13b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

TEIW FROM TO 88 December 101
16. SUPPLEMENTARY NOTATION APPRUVID .iR PUBLIC RELEASE IAW AFR 190-1

ERNEST A. HAYGOOD, 1st Lt, USAF
Executive Officer, Civilian Institution ProQr ams

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

DTIC
f ELECTE fl

FEB 0 11990O

90o o:,-&o/ 0
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

MUNCLASSIFIED/UNLIMITED 0 SAME AS RPT 0 DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
ERNEST A. HAYGOOD, 1st Lt, USAF (513) 255-2259 AFIT/CI

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

AFIT/CI "OVERPRINT"

Standardization of Program EAGLE - Numerical

Grid Generation System

By

Agusto Martinez

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in the Department of Aerospace Engineering

Mississippi State, Mississippi

December 1988

Standardization of Program EAGLE - Numerical

Grid Genrration System

By

Agusto Martinez

APPROVED

Professor and Head of the Director of Graduate
Department of Aerospace Instruction, College of
Engineering Engineering

Aiofessor of Aeraace Dean of the College ofl
Engineering Engineering
(Major Professor)

Associate Professo , Dean of the Graduate School
Graduate Coordinator,
Department of Aerospace
Engineering

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to Dr. Joe F. Thompson

for his guidance and direction.

To my wife whom I love.

A. M.

Mississippi State University

December 1988

Abstract

Agusto Martinez, Master of Science, 1988

Major: Aerospace Engineering, Department of Aerospace Engineering

Title of Thesis: Standardization of program EAGLE - Numerical Grid

Generation System

Directed by: Dr. Joe F. Thompson

Page in Thesis: 101 Word in Abstract: 122

Abstract

j
This thesis describes the conversion of Program EAGLE - Numerical

Grid Generation System to ANSI FORTRAN77 standards; The Development of

the NAMELIST input emulator for Program EAGLE; and the modifications and

additions allowing interactive/non-interactive execution of Program

EAGLE. All the work being done on an IRIS 4D/70GT computer graphics

workstation. Description of additional user supplied inputs for

improved input flexibility is also given as well as a discussion of the

logic implemented in the routines used by the NAMELIST input emulator.

Results are presented for three generic airframes demonstrating the

capabilities of Program EAGLE as an IRIS 4D/7OGT computer graphics work-
0

station. Results discussing the porting of the standardized version of

the EAGLE code to a SUN 4/280 computer system are also presented.

II .il!'! Codes

All" i Avi -dor
Dist I4

Table of Contents

Page

Acknowledgements

Abstract .

Table of Contents iii

List of Figures v

Chapter

1. Introduction . 1

2. Developments 4

2.1 Conversion 5
2.2 Interactive Logic. 7. . 7
2.3 Generalized Parser/NAMELIST Input Emulator . . . 8

3. User Inputs... 11

4. Generalized Parser/NAMELIST Input
Emulator Operation 17

4.1 Parameters, Variables and Arrays 18
4.2 Program Configuration/Setup. 22
4.3 Subroutines and Functions... 25

4.3.1 FNDCHR 26

4.3.2 FNDINT, FNDRL. 28
4.3.3 CHRVAL 29
4.3.4 CONV ER 29
4.3.5 CCI, CCR 30
4.3.6 ELEMNT 31

4.3.7 ILEN, ISIZ 31

5. Results . 32

5.1 Applications 32

5.1.1 Elliptic Missile * * * ' * 32
5.1.2 Ogive - Cylinder - Ogive with fins 33
5.1.3 Elliptic Airframe with Control Surfaces. . 34

5.2 Porting . 36

iii

Page

6. Conclusions~, 37

References . 38

Appendices .* 63

A. Samiple Program Set-Up Listing 63

B. Generalized Parser/NAMELisT Input 68

Emulator Listing

iv

List of Figures

Page

figure 1 - Elliptic missile surface grid 41

Figure 2a - Side view of elliptic missile field grid 42

Figure 2b - Close-up side view of elliptic missile 43
field grid

Figure 3a - Front view of elliptic missile field grid 44

Figure 3b - Close-up front view of elliptic missile field grid 45

Figure 4a - Perspective view of overall elliptic missile field 46
grid

Figure 4b - Close-up perspective view of elliptic missile field 47
grid

Figure 5 - Ogive-Cylinder-Ogive with fins surface grid 48

Figure 6a - Side view of Ogive-Cylinder-Ogive with fins field 49
grid

Figure 6b - Close-up side view of Ogive-Cylinder-Ogive with fins 50
field grid

Figure 7a - Front view of Ogive-Cylinder-Ogive with fins field 51
grid

Figure 7b - Close-up front view of Ogive-Cylinder-Ogive with 52
fins field grid

Figure 8 - Close-up perspective view of Ogive-Cylinder-Ogive 53
,with fins field grid

Figure 9 - Elliptic airframe with control surfaces surface grid 54

Figure 10a - Front view of elliptic airframe field grid 55

Figure 10b - Close-up front view of elliptic airframe field grid 56

Figure 11a - Side view of elliptic airframe field grid 57

Figure 11b - Close-up side view of elliptic airframe field grid 58

Figure 12a - Top view of elliptic airframe field grid 59

v

Page

Figure 12b - Close-up top view of elliptic airframe field grid 60

Figure 13a - Perspective view of elliptic airframe overall 61
field grid

Figure 13b - Close-up perspective view of elliptic airframe 62
overall field grid

vi

Chapter 1

Introduction

With the advent of large-scale computing machines (Cray X-MP, CRAY

2, etc.), numerical techniques in computational fluid dynamics (CFD) are

now able to solve for the flow field surrounding complex airframe con-

figurations I . Numerical grid generation has been cited as a major pac-

ing item for realistic aircraft/missile applications2 and enables

researchers to discretize the domain about arbitrarily-shaped geo-

metries.

Considerable progress has been made in surface (boundary) and grid

(mesh) generation3 - 6 . These advances allow for the application of

multi-block elliptic grid generation techniques to complex aerospace

vehicles as well as to other complex configurations from other disci-

plines (i.e. electromagnetics, hydrodynamics, etc.).

In 1987, the CFD community saw the introduction of a generalized

three-dimensional arbitrary geometry grid generation code called Program

EAGLE - Numerical Grid Generation System7 ,8 . Program EAGLE is a compos-

ite (multi-block), algebraic and elliptic grid generation system de-

signed to discretize the domain in or around any arbitrarily shaped

three-dimensional region. The code combines a three-dimensional, sur-

face generation scheme with a multi-block, three-dimensional

boundary-conforming elliptic grid generation scheme.

1

The surface generation system of Program EAGLE serves as a front-

end to the grid generation system. The surface generation routine de-

velops surfaces (or curves in 2D) to be input to the grid generation

routine as segments of the boundary of the region within which the grid

is to be constructed7 , 9 .

The grid generation system is a general two or three-dimensional

algebraic and elliptic grid generation routine based on a block struc-

ture, which allows any number of blocks to be used to fill an arbitrary

two or three-dimensional regionI0 . Any block can be linked to any other

block (or to itself) with complete (or lesser) continuity across the

block interfaces as specified by input. This routine uses an elliptic

generatioh, system with automatic evaluation of control functions. These

are evaluated either directly from the initial algebraic grid and then

smoothed, or interpolated from the boundary point distributions7 ,8'9'10 .

Other features of the surface generation routine and the grid gen-

er'ation routine are discussed in detail in References 9, 10, 11, and 12.

Program EAGLE was initially developed to execute on large-scale

computing machines (supercomputers) in a non-interactive environment7 '8.

Since its introduction, though, interest has increased in developing

interactive grid generation programs to execute on engineering computer

workstations, as well as mini-super computers and also supercomputers

(such as the Cray 2). The increased power and capabilities of these

computer systems have further sparked the interest of computational

fluid dynamicists and computational aerodynamicists in developing nu-

merical grid generation techniques in an interactive environment.

2

Thus, the objective of this work is to develop an interactive/non-

interactive, portable, user-oriented version of the EAGLE code on a

state-of-the-art computer workstation, and to demonstrate the capabilities

of the interactive version of the code using complex aerospace configu-

rations. A design criterion wae that changes made in the code be trans-

parent to the user and not require any changes of the inputs to the

EAGLE code.

The purpose of this thesis is to describe this effort to

knowledgeable users of Program EAGLE interested in using the

standardized interactive version of the EAGLE code. This thesis can

and should be considered as a user'3 manual of the standardized

interactive version of the EAGLE code and as a supplement to the user's

manual of Program EAGLE in Reference 9.

3

Chapter 2

Developments

Program EAGLE - Numerical Grid Generation System was originally de-

veloped for the Cray 1 and Cray X-MP supercomputing systems 7 . The most

recent version of Program EAGLE has continued to be developed on the

Cray X-MP and Cray 2 computer systems9 . The code is written in the FOR-

TRAN language available on these systems and uses the NAMELIST input ex-

tension also available on these systems7 ,9 .

Although Program EAGLE is written in the FORTRAN language, it does

not completely follow the FORTRAN77 standards1 3' . Following these

standards will allow codes to be ported over to other computer systems

having the FORTRAN77 language compilar in a much easier fashion, i.e.

codes can compile and execute with little or no modifications on differ-

ent computer systems.

The other problem of Program EAGLE is that it uses the Cray NAME-

LIST Input extension1 5 . This feature is very beneficial in that it al-

lews users to supply the inputs into the code by specifying the

appropriate variables with their resn--toive values in any order in the

input line. This makes the list of inputs much easier to understand and

reduces the reliance on the user's manual that would be required if the

inputs were structured (i.e., list - directed and/or formatted inputs).

As mentioned earlier, NAMELIST input is an extension and not a standard

of FORTRAN77. Therefore, not all computer systems carrying the

FORTRAN77 compiler have this feature or extension (for example, computer

workstations, such as the IRIS-4D/7OGT, and others).

4

To be able to satisfy the stated objectives, then, requires the

EAGLE code to be converted to the FOR'TRAN77 language standards. This

also means either elliminating the NAMELIST input fe.-ature or writing a

NAMELIST input emulator (in FORTRAN77 standard). To ensure the changes

made in Program EAGLE are transparent to the user required that a

NAMELIST input emulator be written.

2.1 - Conversion

Converting Program EAGLE to FORTRAN77 standards 1 3 required that

both routines of the numerical grid generation system (i.e., surface and

grid generation routines) be converted independently and compiled cor-

rectly. Since both routines have similar logic, converting the first one

was the most time consuming and most difficult, the reason being that

knowledge and experience had to be gained of the logic and the routine's

operation. Once this knowledge and experience was gained, the second

routine was converted quite easily and quickly to FORTRAN77 standards.

The most obvious first step was to eliminate the Cray NAMELIST in-

put extension within the codes. The next step required changes in using

Hollerith (or character) strings. FORTRAN77 standards do not accept

Hollerith strings but does use character strings instead. This was the

major portion of the conversion.

Converting from Hollerith to character manipulation required all

character, integer and real variables to have only character, integer

and real values, respectively. This was accomplished by specifying

variables of type CHARACTER to be character variables, variables of type

5

INTEGER to be integer variables and variables of type REAL to be real

variables. To allow the user the flexibility of specifying character

values for integer and real variables, the character values are con-

verted to unique integer (or real, respectively) values. These values

are set in PARAMETER or DATA statements in the main portion of each rou-

tine. Note that these unique numbers can and may need to be changed to

accommodate the computer system on which these routines are to execute.

FORTRAN77 does not allow character values to be embedded in common

blocks where integer and/or real variables exist within the same common

block. Therefore, all character variables were removed from these com-

mon blocks and passed to all the necessary routines through the CALL and

SUBROUTINE statements. Separate common blocks for these character vari-

ables could have been included. But, as the development of the NAME-

LIST input emulator was initiated, it was easier to include the charac-

ter variables tn the CALL and SUBROUTINE statements instead of common

blocks.

With the major part of the conversion completed, other smaller

modifications were still needed to allow proper compilation and execu-

tion. One of these included the removal of various DATA statements for

variables residing in common blocks. FORTRAN77 does not allow initi-

alization of variables residing in common blocks by DATA statements un-

less the BLOCK DATA subprogram feature is used. Again, because of the

development of the NAMELIST input emulator, it was easier to initialize

these variables using executable statements at the beginning of the pro-

gram instead of using the BLOCK DATA subprogram feature of FORTRAN77.

6

Other changes to the routines were made to follow suggestions and

guidelines given in Reference 14. One of these is to use the generic

names of intrinsic functions wherever possible. Where intrinsic func-

tions are used within the routines, the names of these functions were

changed to their generic names from their specific names wherever possi-

ble.

Another change included the opening and closing of files within the

routines instead of allowing the system to open and close them. This

gives the user greater flexibility and control over the files needed.

After all these changes were accomplished, Program EAGLE compiled

correctly on the IRIS 4D/7OGT computer graphics workstation. The next

steps involved the development of the interactive logic and finally the

NAMELIST input emulator.

2.2 Interactive Logic

The logic of Program EAGLE is such that converting the code to in-

clude interactive processing was relatively simple with minimal changes.

First, a status indicator (ISTAT) was included to indicate the er-

ror status - zero (0) for no error (default, of course), a negative one

(-1) for a "hard" error and a positive one (1) for a "soft" error. A

"hard" error occurs, for example, when the problem size has exceeded

preset dimensions, thus terminating execution. A "soft" error occurs

when the inputs are incorrect or missing. The routines thei prompt the

7

user to retype the input line correctly. A "soft" error behaves just

like a "hard" error in the non-interactive or batch mode (Reference 9

has details on the errors that may occur).

This variable ISTAT (either set to 1 or -1) with a GO TO statement

replaces the STOP statements found in the original version after an er-

ror has been determined. This allows execution to return to a central

location within the routines and determines the next course of action

depending on the value of ISTAT.

Lastly, the variable IBATCH determines whether interactive or non-

interactive processing is to take place. A value of zero (default) in-

dicates interactive execution, while a value of one (1) indicates non-

interactive execution of the code. Note that if IBATCH is set to one

(1) and interactive execution is attempted, the program will behave as

if it is executing non-interactively. Therefore, any errors (hard or

soft) will terminate execution. IBATCH also controls the writing of the

prompt to standard output. A value of one (1) will not write the

prompt.

2.3 Generalized Parser/NAMELIST Input Emulator

The FORTRAN77 does not have a NAMELIST input feature included as a

standard. NAMELIST input exists, only as an extension available on some

computer systems. Also, NAMLIST input may not be the same between sys-

tems having this feature, thereby, making the original EAGLE code dif-

flcult to port over to various computer systems, especially systems

which do not have the NAMELIST input feature available. To be able to

8

port Program EAGLE to different computer systems, and enable users to

use their previously developed input lists, a generalized parser was

written to emulate the Cray NAMELIST input feature15 .

The inclusion of the emulator into the EAGLE code (i.e. into the

surface and grid generation routines) did not change, alter or modify

the structure of the code; however, additional arrays were required. The

addition of these arrays does not increase the memory requirements sig-

nificantly, since the additional arrays are single-dimension arrays that

are two orders of magnitude smaller than the arrays already present in

the code.

The inclusion of the emulator does require additions into the call-

ing routines. Although not as simple as adding the NAMELIST input fea-

ture into a code as described in Reference 15, the additions are not

complex. These additions are non-executable statements such as PARAME-

TER, DIMENSION, EQUIVALENCE and DATA statements.

Other additions include the two CALL statements to the parsing rou-

tines of course. The first CALL statement calls the subroutine RDSTRG

which reads in a line as a character string with a maximum of 132 char-

acters. The character string is then passed into the calling routino to

be passed to subroutine PARSER, which is the actual NAMELIST input emu-

lator.

unce control returns to the calling routine, the inputs are passed

into the necessary variables by use of EQUIVALENCE statements. The fact

that EQUIVALENCE statements were needed to communicate from the parser

9

to the calling routines required that some of the labeled common blocks

be removed or modified due to the restrictions imposed by using common

blocks and EQUIVALENCE statements.

All the additions and/or modifications made can be identified in

the routines by searching for the line(s) containing the date in which

the additions (and/or modifications) were done followed by the charac-

ters "<gus AM>". The end of the sections with the additions and/or

modifications is signified by a line beginning with a "C" followed by a

string of asterisks.

10

Chapter 3

User Inputs

All inputs are given in the NAMELIST input format of the form

E$INPUT ITEM - 'operation', quantity - value, ... $

The "E" in column 1 indicates to print (or echo) the input line onto the

output file. If the "E" is omitted, then column 1 must either be blank

or have a "C" (meaning to ignore this line).

The first dollar sign ($) indicates the beginning of the input

line, while the second one signifies the end of the input line. The

name of the NAMELIST follows the first dollar sign, with a required

space after the name. INPUT is the name of the NAMELI ST in this exam-

ple. The names used for the NAMELIST in this version of the EAGLE code

are SINPUT- for inputs to the surface generation routine - and GINPUT

and GOUTPUT - for inputs to the grid generation routine.

ITEM - 'operation' designates the desired operation, while the val-

ues relevant to this operation follow (i.e., quantity value). In

this specification, "quantity" refers to the variable or name of the

input quantity, and "value" is its value.

Values for arrays can be given in one of two ways. They are

... , quantity = value, value, value,...

or

quantity = N*value,...

where N is the number of values. Also, a value for a particular element

of an array can be specified by the use of the notation

quantity (M) - value

11

where M indicates the element of the array.

Quantities (variables) of type CHARACTER can only t- given charac-

ter values (with a maximum of 64 characters). Quantities of type INTE-

GER and REAL can be given integer and real values, respectively, as well

as specific character values allowed by the code (see Reference 9, Vols

II and III, for these specific values). Presently, the NAMELIST input

emulator is not able to accept exponential notation (i.e., 1.OE-04) as

input.

For the purposes of clarity, an input line can consist of any num-

ber of (continuation) lines where each line has a maximum of 132 charac-

ters (columns) and the first column must be blank. This enables an

input line to have as many lines as needed, as long as the first line

has the dollar sign in the second column and the last line has the sec-

ond dollar sign signifying the end of the input line. Also, all inputs

must be in capital letters unless specifying a filename. The filename

in quotes can be lower or upper case letters. And finally, single quotes

must be used for all character input values.

Adding the capability of interactive execution has allowed the user

to have greater control over the execution of the code by the addition

of three new operations.

The first operation allows the user to save a session. The input

line looks like the following example:

E$SINPUT ITEM = 'SAVE', FILNAM = 'filename' $

12

where "filename" is the name of a file consisting of no more than 64

characters (includes alpha-numeric characters and symbols), This input

line should be the first line of input. This feature only operates in

the interactive mode. Each input line following this line will be writ-

ten to the specified file (i.e., "filename").

The second operation allows the user to read in a previously saved

session or a previously developed input file. This input line looks

like the following example:

E$SINPUT ITEM - 'READ', FILNAM * 'filename'$

Once again "filename" is the name of the file to be read in by the code.

This input line will cause the inputs to be read in from a file by the

name of "filename" instead of reading the inputs from the screen (or

standard input).

The third operation available allows the user to terminate execu-

tion when desired without necessarily providing all the required inputs

for a particular problem. The input line looks like the following:

E$SINPUT ITEM - 'STOP'$

This will terminate execution and save all the necessary files if this

line is not encountered within an input file. In other words, the exis-

tence of this line in an input file from which the inputs are being read

will terminate reading the inputs from this file, and then will expect

the rest of the inputs to come from the screen (or standard input).

Other options added to Program EAGLE give the user greater flexi-

bility in choosing the type of output desired. Within the surface and

grid generation routines the user has the option of specifying the

13

filenames on input, or using the default filenames of the files to be

written or read in. This can be done by including the following in the

input line:

FILNAM - 'filename',...

where "filename" is the name of the file to be written or read in.

For example, an input line to the surface generation routine may

look like this:

E$SINPUT ITEM 'COMBINE', COREIN - 1, -5,
FILEOUT 1, FILNAM -'BLOCK1'$

This input line will combine the segments stored in cores 1 thru 5 and

write them out on the file named "BLOCKI". The grid generation routine

can then read in this file with the following example input line:

E$GINPUT ITEM - 'FILE', FILE - 11, FILNAM - 'BLOCK1',...$

Another additional feature allows the user to select the output

from the grid generation routine in the form needed to be read in by the

NASA-AMES graphics program called PLOT3D. To select this feature, the

user must include the following in an input line:

S.., OUTER - 'PLOT3D',

This option is generally selected when the file on which the grid is to

be written is specified. For example:

E$GINPUT ITEM = 'STORE', FILE = 72, FILNAM = 'FILE72.fmt',

OUTER - 'PLOT3D'$

Selecting the output feature "PLOT3D" will write formatted records to

the FORTRAN file 72, which has the filename "FILE72.fmt" in the form

needed by PLOT3D.

14

OUTER - 'PLOT3D' allows two options. One option allows the user to

write to the file without a blanking array (default), and the other op-

tion will allow the user to write to the file with a blanking array. To

select the second option the user must specify the operation ITEM -

'BLANK' and its associated quanti-t.es and)aloes in the output phase of

the grid generation routine. For example, an input file to the grid

generation routine selecting the PLOT3D option with blanking may look

like the following:

E$GINPUT ITEM - 'STORE', FILE -72, FILNAM - 'FILE72.fmt',
OUTER - 'PLOT3D' $

E$GINPUT ITEM - 'END' $

E$GOUTPUT ITEM - 'BLANK', BLOCK - 1, START - 1,1,1,

END -65,1,31, VALUE - 2 $

E$GOUTPUT ITEM = 'END' $

In this input list, file 72 will have the filename of "FILE72.fmt", and

the records will be written formatted in the form needed to be read in

by the program PLOT3D. With the operation ITEM = 'BLANK' selected,

file 72 will also contain an integer array called IBLANK specifying

which points are to be 'blanked'. In this example, in block 1 the

15

points starting at 1,1,1 to 65,1,31 will have an integer value of 2

(VALUE-2) stored in the IBLANK array. Any integer value besides zero

(0) in the IBLANK array will tell the PLOT3D program to draw that point

on the screen. Any integer value can be specified in the quantity

VALUE. The default though is one (1).

16

Chapter 4

Generalized Parser/NAM&LIST Input Emulator Operation

As mentioned earlier, Program EAGLE was originally written to use

the Cray NAMELIST inout extension7 ' 9 , which is not available on all

computer systems. Therefore, to ensure uniformity of inputs on all com-

puter systems, and to allow input lists previously developed to be used

without making changes to these lists, a generalized parser/NAMELIST

input emulator was written. This emulator generally follows the basic

rules of use of the NAMELIST input extension specified in Reference 15.

Several, basic guidelines will be stated here, however, for the purpose

of clarity.

All upper-case letters must be used except when specifying file-

names. The filenames can be given in lower or upper-case letters. Sin-

gle quotes must be used everywhere.

An input line can consist of any number of lines, where the maxi-

mum number of characters per line is 132. An input line begins with a

dollar sign ($) in column two (2), and is terminated with a second dol-

lar sign at the end of the input line, regardless of how many lines make

up the input line. Each line after the first line of the input line

must start on or after column two (2).

Column three (3) of the first line must begin with the name of the

input list (the NAMELIST name), and a blank must separate the name with

the actual beginning of the inputs. Blanks can be used throughout to

make the inputs more legible, but blanks cannot appear within variable

names or between single quotes when specifying character values.

17

Column one (1) must be blank or have either an "E" or a "C". An

"E" in column one (1) indicates to wr1te the input line to standard out-

put. A "C" in column one (1) means to ignore this line; however, this

line will be written to standard output.

4.1 - Parameters, Variables and Arrays

The operation of the parser/NAMELIST input emulator is basically

divided into two major routines. The first, subroutine RDSTRG, reads in

a character string while the second, subroutine PARSER, takes this

string, checks it and then parses it to the appropriate variables.

In the routine RDSTRG the variable STRING is the character string

to be read in, with the actual maximum character length being specified

by the variable ISTRNG. The variable NSTRNG provides the maximum al-

lowed character length for the variable STRING. Note that NSTRNG should

be less than or equal to ISTRNG. The variable IREAD determines whether

to read from a file (IREAD = 1) or from standard input (default). The

variable ISTAT specifies the error status - zero (0) means no error

while any other number (say, 1 and -1) indicates an error has occurred.

The variable LCT is the actual length of the character string read in.

The variables STRING, LCT and ISTAT are passed back to the calling rou-

tine.

The character string STRING is then passed from the calling routine

into subroutine PARSER through the CALL and SUBROUTINE statements for

parsing. The parameters NVAR, NCHAR, NINTG and NREALS are used to di-

mension the arrays in subroutine PARSER. NVAR is the total number of

18

variables the user can supply as input. This parameter is the sum of

the other three parameters, NCHAR, NINTG and NREALS. These three are

the total number of characters, integers and real variables, respect-

ively, that the user can supply as input.

The three paramete-b NCVAL, NIVAL and NRVAL are the total number of

characters, integer and real values, respectively, that can be supplied

during input. The difference between these three parameters and the

previous set of parameters is that these three parameters contain the

sum total of all the elements of the arrays of the input variables.

NCVAL, NIVAL and NRVAL can be the same as NCHAR, NINTG and NREALS if all

the variables which can be supplied during input contain only one ele-

ment (i.e., all the variables are not arrays).

The last three parameters are NDAT, NIDAT, and NRDAT. The sum of

NIDAT and NRDAT gives NDAT - the total number of integer (NIDAT) and

real (NRDAT) data constants set in the calling routine. These are used

for the purpose of specifying character values for integer and real

variables. The parser then knows to convert supplied character strings

into unique integer and real numbers.

The arrays needed by subroutine PARSER are NAMLIS, NDIM1, NDIM2,

ICHR, INTGR, REALS, CDATA, IDATA, RDAT, and CPOS, IPOS, RPOS. he char-

acter array NAMLIS is dimensioned to NVAR and contains the list of input

variable names organized with input variables of type CHARACTER first,

type INTEGER next, and type REAL last. This array is used to check the

input and see that the supplied variable exists in the NAMELIST.

19

The integer arrays NDIM1 and NDIM2 are dimensioned to NVAR and hold

the lower and upper bound dimensions, respectively, of all the

variables. The values within these arrays are organized in the same

manner discussed above. A two-dimensional array will have the upper

bound of its dimension set to the total number of elements within that

array. These arrays are used to ensure that no more than the required

number of values are passed into their respective variables.

The arrays ICHR, INTGR and REALS are character, integer and real

arrays, respectively, which hold the values of all the variables. These

arrays are then passed back into the calling routine and equivalenced to

the appropriate variables. These arrays are dimensioned to NCHAR,

NINTG, and NREALS, respectively.

The character array CDATA contains the names of the constants set

in the calling routine. This array is used to check the input and see

that the supplied character inputs to integer and real variables are

present within this array. The array CDATA is dimensioned to NDAT.

The arrays IDAT and RDAT are integer and real arrays, dimensioned

to NIDAT and NRDAT, respectively. These arrays contain the unique inte-

ger and real constants whichwill be passed to the appropriate variables

when character values are supplied to integer and real variables.

The last three arrays are CPOS, IPOS, and RPOS. These three are

integer arrays dimensioned to NCHAR, NINTG and NREALS, respectively. The

purpose of these three arrays is to hold actual array positions within

the three arrays ICHR, INTGR and REALS, respectively. In other words

CPOS, IPOS and RPOS act as pointers for the parser to place the values

in the proper position in the respective arrays.

20

The last set of arguments needed by subroutine PARSER consists of

two character strings - STRING and NAMLST - and several integer vari-

ables. The first character string called STRING is passed from the rou-

tine RDSTRG to the calling program and then to subroutine PARSER. The

second character string, NAMLST, holds the name of the NAMELIST input.

This variable can be an array holding different names of the NAMELIST

input. This is demonstrated in the grid generation routine of the EAGLE

code.

The integer variable NDS, indicates where the second dollar sign is

located in the character string STRING. If none is found then NDS is

set to zero (0), the default.

The variable L maintains a sum total of the lines read in per input

line. The default value for L is one (1).

The integer variable INL stores the number of the last input vari-

able found in STRING. INL also has a default value of one (1).

The next variable, ITEXT, keeps track of the number of values sup-

plied for the last input variable in STRING.

The variable IECHO is a print (or echo) indicator which is set to

one (1) when an "E" is present in column 1 of the first line of the in-

put line. The default value for IECHO is zero (0).

The variable LS and LT store the character lengths of the character

strings STRING and TEXT, respectively. (TEXT stores the name of the

input variable.) Both have default values of one (1).

The variable NL serves as a search pointer indicating where in the

character string STRING the search last ended. Its default value is one

(1).

21

The next variable NJ stores the total number of elements within an

array. This variable is used to ensure that the value stored in ITEXT

is less than or equal to NJ. Again, the default value for NJ is one

(1).

IEQUAL indicates whether an equal sign is present. A value of one

(1) means an equal sign was found, while a value of zero (0) means no

equal sign is present.

The penultimate variable, NUM, indicates to multiply the given

value by an integer number when the value for NUM is one (1).

The last variable in the argument list (ISTAT) is the status indi-

cator discussed earlier.

All these parameters, arrays and variables are needed by the gen-

eralized parser/NAMELIST input emulator to successfully parse the in-

puts. Only the character string STRING and the three arrays storing all

the inputs - ICHR, INTGR and REALS arrays - are used by the calling rou-

tine.

4.2 Program Configuration/Set-Up

To be able to use this emulator, several non-executable statements

must be added to the calling routine as well as two CALL statements to

the routines which read in the lines of input (subroutine RDSTRG) and

which parse these inputs to the appropriate variables (subroutine

PARSER). Appendix A has a sample listing of all the statements which

need to be added to the calling routine. The following paragraphs will

discuss the needed statements.

22

To begin with, several arrays and the variable STRING must be

specified as type CHARACTER. The character length of STRING must match

the value specified for the variable ISTRING in the PARAMETER statement.

The value for NSTRING can be set to ISTRNG or to a lesser value as evi-

denced in Appendix A.

Next, PARAMETER statements containing the values for the variables

NCHAR, NINTG, NREALS, and NCVAL, NIVAL, NRVAL and NRDAT are required.

Also, PARAMETER statements will be needed to initialize the variables

NVAR and NDAT. NVAR is defined by the equation

NVAR - NCHAR + NINTG + NREALS

and NDAT is defined by the equation

NDAT - NIDAT + NRDAT

These statements set up the dimensions needed by the arrays used by the

routine PARSER.

The next item is to dimension the arrays needed by the parser. The

arrays NAMLIS, NDIM1 and NDIM2 are dimensioned to NVAR. The arrays

ICHR, INTGR and REALS are dimensioned to NCVAL, NIVAL and NRVAL, respec-

tively. The arrays CPOS, IPOS and RPOS are dimensioned to NCHAR, NINTG

and NREALS, respectively. The last three arrays CDATA, IDAT and RDAT

are dimensioned to NDAT, NIDAT and NRDAT, respectively.

After the DIMENSION statements comes the setting up of the communi-

cation between the three arrays returned by the parser - ICHR, INTGR and

REALS - and the variables used by the calling routine. This is accom-

plished by using EQUIVALENCE statements. One set of these statements

passes the values in the character array ICHR into the appropriate charac-

23

ter variables. The next set passes the integer values in the ar-

ray INTGR into the appropriate integer variables. And finally, the

third set of statements passes the real Values in the array REALS into

the appropriate real variables.

The last set of EQUIVALENCE statements passes unique integer and

real numbers to the parser through the arrays IDAT and RDAT, respect-

ively. This last set of statements is required only if character val-

ues are to be supplied during input to integer and real variables.

These unique numbers should be set either in PARAMETER statements or

DATA statements.

The last set of statements - DATA statements - initialize the ar-

rays NAMLIS, NDIM1, NDIM2, CPOS, IPOS and RPOS, as well as initializing

the unique numbers and the default values for the variables needed in

subroutine PARSER.

After completing the set-up of the non-executable statements, the

section which reads the inputs and then parses the inputs must be added.

The first CALL statement is to the routine RDSTRG which reads the input

(as a character string), checks its length and returns the character

string STRING. The second CALL statement is to the routine PARSER where

the character string STRING is passed into it, and the input values are

returned in the three arrays ICHR, INTGR and REALS. The character

string STRING can be used by the calling routine since it is not changed

in any way. These CALL statements should be placed after initializing

the defaults and prior to testing for correct input values.

,24

4.3 Subroutines and Functions

Subroutine PARSER not only governs the parsing of the inputs but

also has the logic necessary to emulate the Cray NAMELIST input fea-

ture 15. This logic is the first thing which the character string STRING

goes through.

Initially the search pointer NL is set b, using the name of the

NAMELIST (NAMLST), and the character length of STRING is also determined

and placed in the variable LC.

The first section of the logic ensures that column one (1) is blank

or has either an "E" (writes the character string STRING to standard

output) or a "C" (the line is ignored and written out to standard out-

put and execution is returned to the calling routine). After this test,

a dollar sign ($) is searched for in column two (2). If found then the

search continues for the second dollar sign indicating the end of the

input line. If this second dollar sign is not found in the first line

(L-I) of the input line, the variable LS is se'W. to the character length

of STRING (LC). Other subsequent lines will be tested until the second

dollar sign is found, thus terminating the input line.

The next test in the logic looks for the name of the NAMELIST

(NAMLST) in STRING starting from column three (3) up to the column

specified by the search pointer NL. After satisfying this condition, a

blank in column NL+1 is searched for, and then NL is reset to its proper

position in STRING.

25

The next part in subroutine PARSER will put together a string of

characters In the character string TEXT and then check it against the

list (NAMLIS) to determine if the supplied input variable is a valid

input. If so, the variable INL specifies which input variable, and sets

the maximum number of elements (NJ) and the element position within one

of the three arrays (ICHR, INTGR or REALS) for that particular input

variable. Finally STRING, LS, NJ and one of the three arrays are passed

into one of the three routines (FNDCHR, FNDINT or FNDRL) for parsing,

depending on the value in INL.

4.3.1 FNDCHR

Subroutine RNDCHR searches for a character value within the charac-

ter string STRING, starting from the last position of the pointer (L) to

the end of the string (LS) or until the character value has been found,

whichever comes first.

The routine begins by searching for the equal sign after the input

variable. Generally, the variable L will point to a position in STRING

which is a blank or has an equal sign (-) initially. If the equal sign

is not found prior to reaching the end of the string, execution will

return to the routine calling the parser.

After finding the equal sign, the character value is found in

STRING by searching for a set of single quotes ('). Once the first sin-

gle quote is found, routine CHRVAL is called to get the position of the

second single quote within STRING, thus indicating a character value is

present. The character value is then stored in the array IC, providing

26

that the number of values found (ITEXT) does not exceed the number al-

lowed (NJ). The search pointer (L) is then updated, and control is re-

turned to the beginning of the routine to determine if more values are

present.

If, after finding the equal sign, a number followed by an asterisk

(indicating multiplication) is found, then the upcoming character value

will be repeated in the array IC the number of times specified by this

number.

This number must be an integer and is stored as a character string

in TEXT to be later converted to an integer number. Then the search

continues for the asterisk (*). Finding the asterisk, routine CONVER is

called to convert the character string in TEXT to a number which is

stored as an integer number in ITEXT. If ITEXT is less than or equal to

the value in NJ then the variable NUM is set to one (1), and the search

continues for the character value as described above. This time,

though, the character value is stored ITEXT times in the array IC.

The search is terminated and control is returned to the parser once

a comma and a character after the comma is found not satisfying any of

the conditions, and the value in ITEXT is less than or equal to the

value in NJ.

4.3.2 FNDINT, FNDRL

Subroutines FNDINT and FNDRL search for an integer or real value,

respectively, within the character string STRING, starting from the last

position (L) to the end of the string (LS), or until all the integer or

27

real values have been found for the specified input variable. Both rou-

tines function similarly, with the exception that subroutine FNDRL re-

quires searching to include a decimal point (.). Also, both routines

use the same logic used in subroutine FNDCHR to determine when the input

values are being specified. In other words, an equal sign is found

first, and then the input values come after the equal sign.

After finding the equal sign, an integer (or real) value is found

in STRING by searching for a character between the number zero (0) and

nine (9), or a plus (+) or minus (-) sign. In subroutine FNDRL the

search also includes a period (.). Once any of these symbols are de-

tected, they are placed in the character string TEXT as characters until

a comma (,) is found. Then TEXT is converted to an integer (or real) value

by the routine CONVER and stored in the array IC if the number of input

values (ITEXT) does not exceed the maximum specified by the variable NJ.

Another piece of logic was inserted to allow input of character

values to integer and real variables. The character values are found by

searching for a single quote, calling subroutine CHRVAL to determine

the position of the second single quote, and then converting this charac-

ter value to a unique integer (cr real) value using subroutine CCI (or

CCR), respectively. The unique integer and real values must be preset

in the routine calling subroutine PARSER, as well as setting up the ar-

rays needed by the two routines, CCI and CCR (see Seation 4.2). After

conversion to unique integer (or real) values, they are then stored in

the array IC as described earlier.

28

As discussed in Section 4.3.1, if an asterisk is present after a

number has been specified, then the upcoming input value will be re-

peated in the array IC the number of times specified by the given num-

ber.

The search is terminated and control is returned to the parser as

described in Section 4.3.1.

4.3.3 CHRVAL

Subroutine CHRVAL finds a character value in the character string

STRING by returning the position of the second single quote in STRING.

The first single quote is found prior to calling this routine, and

the position is passed into CHRVAL through the variable I. The second

single quote is searched for in STRING, and its position is stored in

the variable IQ2. If no second quote is found, IQ2 will have a value of

zero (0). The character value is then checked for embedded blanks

between the single quotes, and, finally, the position of the second sin-

gle quote is returned to the calling routine in the variable IQ2.

4.3.4 CONVER

Subroutine CONVER converts a character representation of an integer

or real number to an actual real number (excluding exponential represen-

tation of a real number).

29

The character representation comes from the calling routine in the

character string TEXT. TEXT is first checked to determine if a minus

(-) or a plus (+) sign is present. If a minus sign is found then the

variable SIG is given the value of -1, while if a plus sign is found SIG

will have a value of 1. The beginning (NSTR) of the string TEXT is then

set to one plus the present point. If a decimal point is found, the

position of the decimal point is returned in the variable NDEC.

Each character in TEXT is converted to a real number by subtracting

the assigned value of the ANSI representation of zero (0) from the as-

signed value of the ANSI representation of each character in TEXT. All

the numbers are then added to obtain the value stored in the variable

VAR. The result in VAR is a real number which can always be converted

to an integer when necessary in the calling routine.

4.3.5 CCI, CCR

Subroutines CCI and CCR convert character values passed in the

character string TEXT into unique integer and real values, respectively.

These unique values must have been specified in the routine calling sub-

routine PARSER and passed through the arrays IDAT and RDAT. The array

CDATA contains the list of character values to be specified during input

for integer and real variables.

30

TEXT is first checked against the list in CDATA to ensure that the

character value within TEXT is allowed. Then the position of the char-

acter value within the array CDATA is checked to ensure that the correct

unique number is stored in the variable IVAR (VAR in subroutine CCR).

IVAR is then passed to the calling routine.

4.3.6 ELEMNT

Subroutine ELEMNT converts a character representation of a number

within a set of parenthesis to an integer number indicating the position

in the array specified during input.

The character string TEXT contains the input variable (along with

the parentheses and number) in character representation. The positions

of the left and right parentheses (NL and NR, respectively) within TEXT

are determined. Then, between the parentheses, the character represen-

tation for the number is stored in the character string NUM. NUM is

then passed into the routine CONVER for conversion to an integer value

indicating which element in the array. The value is then returned in

the variable IVAR.

4.3.7 ILEN, ISIZ

Function ILEN determines the actual number of characters in the

character string TEXT.

Function ISIZ counts between the two numbers NI, N2. The sum total

is returned in ISIZ.

31

Chapter 5

Results

5.1 Applications

Three generic configurations were used to demonstrate Program EA-

GLE's capabilities on an IRIS 40/70GT computer graphics workstation. The

first of the configurations is an elliptic cross-section missile7 ,16 ,17.

The second is an ogive-cylinder-ogive with fins7 ,18 . And the third is

an elliptic airframe with horizontal and vertical control surfaces8 , 2 .

Each configuration was generated interactively with no other users

on the system. Also, each configuration generated used the option in

the EAGLE code to execute as if it were executing on a Cray X-MP com-

puter system with solid state desk device (SSD). In other words, files

which are assigned to SSD on a Cray X-MP with SSD are now used as regu-

lar files. Therefore, CPU times stated may consist of up to 80% I/O

time and not actual computation. This statement is made based on simi-

lar runs using SSD on the Cray X-MP computer system 19 .

5.1.1 Elliptic Missile

This configuration has an elliptic - 3:1 - cross-section throughout

the body described by a parabolic curve from the nose to the aft end of

32

the body. Extending from the end is an attached sting. Figure 1 shows

the body of this configuration.

A C-type system is used to discretiize the domain on and around the

body. This field grid is described by two (2) blocks (or grids), each

block containing one-half of the configuration. Each block has the di-

mensions of 65x18x31 points - 65 points in the axial direction, 18

points in the radial direction and 31 points in the circumferential di-

rection - for a total of 72540 points (36270 points per block).

Figures 2a through 3b display side and front views of the algebraic

grid. Figures 4a and 4b show a perspective view of the entire grid and

a closeup view of the grid near the body. The surface and field grids

shown in these figures are the same as those presented in Reference 7.

This indicates the grids generated on an IRIS 4D/7OGT computer system or

similar systems are consistent with previously documented work.

The generation of the algebraic grid took 863.81 CPU sec (30 min

wall clock time). This breaks down to 1.2 x 10- 2 CPU sec/point. An el-

liptic grid with five iterations was also generated to obtain an idea of

the time it takes to generate an elliptic grid. The generation of the

elliptic grid took more than twice as long as the generation of the al-

gebraic grid. The times are 2225.01 CPU secs or(68 minutes wall clock),

which comes to 3.75 x 10- 3 CPU sec/iteration/point. No elliptic grids

are shown since they demonstrate little or no difference from the alge-

braic grids shown in Figures 2a through 4b.

33

5.1.2 Ogive - Cylinder - Ogive with Fins

This configuration consists of an ogival nose, a cylindrical mid-

section and an ogival boattail with fins. Once again, a sting extends

from the aft end of the body. Figure 5 displays this geometry.

This configuration also uses a C-type system for the field grid

around the body. It consist of four (4) blocks. Each block has a total

of 33600 (140x24x10) points, for a sum total of 134400 points for the

entire field grid. Figures 6a through 7b display the side and front

views of the algebraic grid. Figure 8 shows a perspective view of the

grid of one of the blocks near the body. Once again, the grids gener-

ated on the IRIS 4D/7OGT are comparable to those generated on Cray com-

puter systems as documented in References 7 and 18.

The generation of the algebraic and elliptic grids (5 iterations)

took 2022.25 CPU secs (1.5xiO - 2 CPU sec/pt) and 4510.98 CPU sec

(3.70xi0 - 3 CPU sec/iteration/pt), respectively. The wall clock time for

the generation of the algebraic grid was 75 minutes. No wall clock time

was observed for the generation of the elliptic grid, although, it can

be estimated at approximately 180 minutes. Notice that the times speci-

fied in CPU seconds per point for the algebraic grid and CPU seconds per

iteration per point for the elliptic grid for the first configuration as

compared to this configuration are similar although not the same. The

difference can be attributed to the larger number of blocks increasing

the I/O time.

34

5.1.3 Elliptic Airframe with Control Surfaces

This last configuration is of an advanced airframe consisting of an

elliptical cross-section for the upper surface of the body, a flat bot-

tom surface, and vertical and horizontal control surfaces. Only half of

this airframe was gridded, as seen in Figure 9.

The field grid surrounding this airframe is a H-type system con-

sisting of five (5) blocks, for a total of 111040 points for only half

of the airframe and the surrounding domain. The dimensions for each

block are as follows:

Block 1 - 70x24x10 (16800) points

Block 2 - 70x24x22 (36900) points

Block 3 - 70x16x31 (34720) points

Block 4 - 20x24x31 (14880) points

Block 5 - 20x16x24 (7680) points

Block 1 encompasses part of the upper surface of the body up to and

including one side of the vertical tail. Block 2 has the rest of the

upper surface of the body from the other side of the vertical tail to

the upper surfaces of the horizontal control surfaces. Block 3 contains

all of the bottom surface, including the flat sides of the horizontal

control surfaces. The last two blocks - blocks 4 and 5 - encompass the

entire domain in front of the airframe. Figures 10a through 13b show

front, side and top views of this configuration, and Figures 13a and 13b

35

show a perspective view of the entire domain and a closeup view of the

grid near the body. These grids are also comparable to the grids docu-

mented in References 8 and 12.

The algebraic grid took 3038.7 CPU sees to generate, while the el-

liptic grid (5 iterations) took 6500 CPU sees. With respect to CPU

time, the algebraic grid took 2.74xlO- 2 CPU sec/pt and the elliptic grid

took 3.8x10- 3 CPU sees/iteration/pt.

5.2 Porting

After verifying that Program EAGLE worked correctly on the IRIS

4D/70GT computer graphics system, the code was placed on a SUN 4/280

computer system to determine if the code is portable across different

computer systems.

After placement of the code on the SUN 4/280 computer system, the

FORTRAN77 version of the EAGLE code compiled without errors and without

having to make any modifications or changes to the code. This version

of Program EAGLE executed correctly for all three configurations

described earlier. The CPU times obtained to generate these three

configurations on the SUN 4/280 computer system are comparable to those

times obtained on the IRIS 4D/7OGT.

36

Chapter 6

Conclus ions

The results of this effort show that the FORTRAN77 version of the

EAGLE code with its own NAMELIST input emulator works as well as the

version written for the Cray systems. The three configurations used to

test the FORTRAN77 version of the EAGLE code have demonstrated the capa-

bilities of the code, as well as obtaining results consistent with pre-

vious work documented in References 7 through 9, 12, and 18. This

version of the EAGLE code can then be used on other systems having the

FORTRAN77 compiler with little or no modifications to the code as demon-

strated on the SUN 4/280 computer system. As power and speed of com-

puter systems increase, the more plausible it becomes to execute Program

EAGLE in an interactive environment, especially when tied to a graphics

program allowing the user to "Lee" the work being achieved.

As with any other effort, this effort is not the one to end all

efforts. But it is a beginning of a powerful tool for the computational

fluid dynamics community. Further efforts are needed to give the user

greater control and flexibility of the execution of the code and allow

visualization by the uer of the problem at hand.

37

References

1. Priolo, F. J., Wardlaw, A. B., Baltakis, F. P., and Solomon, J.
M., "Inviscid Multiple Zone Strategy Applied to Complicated Su-
personic Tactical Missile Configurations," AIAA-85-1813, Aug
1985.

2. Kutler, P., "A Perspective of Theoretical and Applied Computa-
tional Fluid Dynamics," AIAA-83-0037, Jan 1983.

3. Mounts, J. S., Martinez, A., and Thompson, J. F., "An Analysis
of Elliptic Grid Generation Techniques Using 'An Implicit Euler
Solver," AIAA-86-1766, Jun 1986.

4. Thompson, J. F., "A Survey of Grid Generation Techniques in Com-
putational Fluid Dynamics," AIAA-83-0447, Jan 1983.

5. Thompson, J. F., "A Survey of Composite Grid Generation for Gen-
eral Three-Dimensional Regions," Numerical Methods for Engine
Airframe Integration, S.N.B. Murthy and G. C. Paynton (ed.),
AIAA, 1986.

6. Thompson, J. F., Warsi, Z.U.A., and Mastin, C. W., Numerical
Grid Generation: Foundations and Applications,, North-Holland,
1985.

7. Martinez, A., Mounts, J. S., and Thompson, J. F., "Program EAGLE
- Numerical Grid Generation System User's Manual," AFATL-TR-
87-15, Mar 1987.

8. Martinez, A., Chae, Y. S., and Thompson, J. F., "Program EAGLE -
Numerical Grid Generation as Applied to Advanced Airframe Con-
figurations," AIAA-87-2294, Aug 1987.

9. Lijewski, L. E., Cipolla, J., Thompson, J. F., and Gatlin, B.,
"Program EAGLE - Users Manual", AFATL-TR 88-117; Vols. I, II,
III, Oct 1988.

10. Thompson, J. F., "Composite Grid Generation Code for General 3-D
Regions - the EAGLE code", AIAA Journal, Vol. 26, No. 3, pg 271,
March 1988.

11. Chae, Yeon Seok, "The Construction of Composite Grids for Gen-
eral Three-Dimensional Regions", Ph.D. Dissertation, Missis-
sippi State University, Aug 1987.

12. Jones, Gerald A., "Surface Grid Generation for Composite Block
Grids," Ph.D. Dissertation, Mississippi State University, May
1988.

38

13. American National Standards Institute, American National Stan-

dard FORTRAN, X3.9 - 1978 (FORTRAN77). This standard is avail-
able from the American National Standards Institute, 1430
Broadway, New York, N.Y. 10018, USA.

14. Balfour, D., and Marwick, D. H., Programming in Standard
FORTRAN77, North-Holland, 1985.,

15. Cray Research Inc., CFT77 Reference Manual, Publication number

SR-0018, Cray Research Inc., 2520 Pilot Knob Rd, Suite 310,
Mendota Heights, MN 55120, Sept 1986.

16. Shere,.a, D. E., Amidon, P. F., Dahlem, V., and Brown-Edwards,
E., 'Pressure Test of Three Elliptical Missile Body Configura-

tions at Mach Numbers 1.5 to 5.0", AFWAL-TM-84-236-FIMG, Dec
1984.

17. Remotigue, M. G., and Mounts, J. S., "A Semi-Empirical Examina-
tion of the Aerodynamics of Elliptic Missile Configurations Us-
ing Missile DATCOM", AFATL-TR-85-100, Apr 1986.

18. Cottrel, C. J., and Lijewski, L. E., "A Study of Finned Multi-
body Aerodynamic Interference, at Transonic Mach Numbers",
AIAA-87-2480, Aug 1987.

19. Thompson, J. F., Private Communication, Mississippi State
University, MS, 1988.

39

FIGURES

40

Figure 1 -Elliptic missile surface grid

41

4

4-4

42-

44
0

*f-I

43'

Figure 3a - Front view of elliptic missile field grid

44

I I // /~

\ %

Figure 3b -Close-up front view of elliptic missile field grid

45

4i-4

0

i//i
93.
H

14I

46-

li/i i' .ii'/~ ~ ~ 4-i)

I-

XV"

N\\"

00

47

Figure 5 -Ogive-Cylinder-Ogive with fins surface grid

48

1

~' I / A

49 ,,

0

0

0

Ql)

CIO

500

Figure 7a -Front view of Ogive-Cylinder-Ogive with fins field grid

5'

Figure 7b -Close-up front view of Ogive-Cylinder-Ogive with fins field grid

52

'ON-
44

44

/11

/to

0

4-'

1

a')

04

53

Figure 9 - Elliptic airframe with control surfaces surface grid

54

//

Figure 10a -Front view of elliptic airframe field grid

55

I /

I1 /it/ I. -

Figure 10b -Close~-up front view of elliptic airframe field grid

56

rz

tw

Hn

co

57

'44

41

4-4

58

'.4

4-4

44I

-4

.. 1-

59U

-i

'44

'I

0

4-4
0

600

L--J

Figure 13a - Perspective view of elliptic airframe overall field grid

61

f 1

'-7

I IF

Figure 13b -Close-up perspective view of elliptic airframe overall field grid

62

Appendix A

SAMPLE PROGRAM SET-UP LISTING

63

CHARACTER1C98 NAM[.ST Y HAMLIS P CsIATA
CHARACTER*Kt44 STRING
CHARACTER1'd.4 !CX.R

INTEGER CPOS t TPOS ,RPC3S ,PRMPT

rNTEGER UIP iDOWN ,RSTART

INTEGER PtITNFE P!NL F'PITEXT Y PIECHO ,PLS ,PIT ,PNI. ,PNJ

PIEOQJAI. ,NU
C

PARAMFTER(NCHAR 7 1 NINTG 2 7 PNREAL.S
C

PARAMETER(NCVAL =3A? ?l;VAL =2 9NVALMX+43 NRVA. i.(MP.5 +

PARAMETER(NIFIAT =3 ,NRDAT 2

PARAMETER(NVAR =NCHAR + NINT6 + NREALSc
C

PARAMFTER(NBAT =NIDAT + NRflAT)
C

PARAMIETER(11F1 NVALMX + 41 7 ICP1 = 2)
C
C.0.43~* * *****3 * * * * * * ****3* **3*

C
PARAMETER (RNONE =3.402824F+36 vINONE =2147483647

C
C
C

DIMENSION NA1ILIS(NVAR) NDIMI(NVAR) f NDIM2(NVAR v
a NAML.ST(2)

C
DIMENSION ICHR(NCVAL),INTGR(NYVAi.) Y RFAIS(NRVA!

C
DIMENSION CI3ATAC NDAT) TDAT(NIDAT) ; RDAT(NRBiAT

C
DIMENSION CPOS(NCHAR) XPOS(NINT6,) , RP6OSz- NREALS

C
cc THIS SET FOR THF CHARACTER VARIARLES
C

EGUIVALFMCE (TCHR(1) p ITEM) p (ICHR(2) r CLASS)
EQUJIVAL.ENCE (ICHR(3) p 'INTFRP) p (IrHR(4) t PROTYP)
EQUIVALENCE (ICHR(5) p FUN) v (ICHR(6) 9 BLEND)
EQUIVALENCE (ICHR(I?) P REWIND) t (XCHRC1O) p CONTYP)
EQUIVALENCE <ICHRCI2) p RESTART) p (ICHR(12) p CHECK)
EQUJIVAL.ENCE (ICHRCt3) r SlIOCON) r (ICHR(14) p AI.L.)
EQUIVALENCE C ICHR(15) f WEIGHT) (ICHR(16) y MATH)
EQUJIVALENCE (ICHR(17) p OUTER) (XCHR(18) y DFIRST)
EQUIVALENCE (ICHR(19) t PCROSS) (C CHR(20) ,PROFOR t PR<OF
EG1JIVAI.PNrF (liCJR(23-) p CONrIIT) (TCHRC24) , CONTIN)
EQUIVALENCF (ICHR(25) r TRIAD) (ICHR-(26) NEW)
EQhJIVALENCK (ICHRC(.7) p KSTORF~) (IrHR(28) , FOrM)
EQUIVALENCE (ICHRz(29-) , MODE) ,(ICHR(30) 1 PRINT)
EOIuIVALEFNCE C(CRCt PART) p (tCHRC32) p ALKERR)
EQLUIVALENCE (7(CHR(Z3) , ITORT) p (ICHIR(34) p FtI.NAM)
EQOIVALENICF lrICRC3Fi) CONTUR)

cc THE NEXT SET IS FOR THE INTFGFR VARIABLE.S-
C

EQUIVALENCEF IN)TOR(1) p START Y PCITNT
EQIlVA1.ENCE TNT6FRC 4) p ISTART r IPoinT

64

EQUIVALENCE (LNTOR(7) y END) NTGR(lO) ; q
EGJJVAl.FNfCE (INTGR(13) r BLOCK ,B ,BLOC

E0UrVALFNCF (NTGR(34) t TBLOCK p IR)
ECIIJIYAI.ENrE x NrGR(11) 9 ORDE.R 7 .SMOOTR Y S)
EOUI-VAI ENCr*" XNTCrR(1S) r RORDER p SMOCOM r RS
,%GllI VALEiNCE CINTGR(710 F OPOINT) t (TNTS)R(-74) f ITMAX
EQUITVALENCE CTNTGR(25) p FII. F) 9 (INTCR(:-6) p CONUPY
ErilJTVAl.Nr C INTGR(27) pVAI.OU)ToVALUIE) 9 (INTORCIS) P LOCAT
EG#JXVALENCE C NTGR(31) s SEG~MENT) 9 INTGR(32) r POINTS
EQUIVALFUGCE C NTGiR(.-s.) i DIRECT) i (TNTGR(34) ? NDFX
EQUIVALENCE CINTGR(35) t PROnIR ,PROJ

E3JTVALEOC(E (tNT.GR(7) f siRE
EQUIVALENCE C NTGR(41) , TERMS) , C IEFI t.TTRMS

THE NEXT SET IS FOR THE RFAl. VARYAJ.==,

EQUIVALENCE (REA.LS(1) 9 ACCPAR) p (REALS(2) y TOL
EQUIVAL.ENCE (REALSC 3) p CONFAC) 7 (RFAL.S(4) P SPAVA.
EGUIVALENCE (RFAI.S(5) 9 VALUtES)

C THIS SET OF EQUIVALENCE STATEMENTS MAINL.Y USED WHEN CHARACTER
C VAL.UES ARE INPUtJS TO INTEGER OR REAL VARTA8LES.
C

EauIVALENCE(IriAT(i) , UP) y (IDAT(2) , DOWN)
EUTVAL.ENCE(IDAT(3) ,RSTART)

C
EGUIVALENCEC RJ)AT(1.I OPTIMUIM) p(RDAT(2) F XTRAP)

C------------------------------- ..----.--------------

C THIS SFT OF STATEMFNTS ARE FOR PUANTITIES OF TYPE CHARACTER
c

DATA NAMLST/ 'GINPUT' F '0OUTPUT'/
C

DATA (NAM.ISCI)r,71,NCHAR)/ 'ITEM'y 'CLASS' , 'INTFRP' y
I'PROTYP' v 'FUN' 9 BED 'RE.WIND'

z 'C.ONTYP' p 'RESTART' , 'CHECK' y 'SMOCON'p
a'AI.l.' p 'WEIGHT' , 'MATH' , 'CUTER'

I 'OFIRST' p 'DCROSS', 'PROFOR' ,'CONCUIT'
9 'CONTIN' t 'TRIAD' , 'NEW' ,'KSTORE'
& 'FORM' f 'MODE' v 'IPRINT' , 'PART'
z '3L.KFRR' f 'INTORT' 7 'FXILNAM' ,'rCONTIJR'/

C THIS SET OF STATEMENTS ARE FOR QUANTITIES OF TYPE INTEGER

DATA (NAMI.I(I),I=NCHAR+1IY'INTG+NCHAR)/
I 'START' r'ISTART' p 'END' p 'IEND'
& 'BLOCK' 9 'IBLOCK' 9 'ORDER' p, SMOD 1R,
a 'RORDER' ,'SMOCOM' , 'POTNT' ? 'IPOINT'p
a 'OPOINT' 'ITMAX' , 'FILE' ? 'CONUPI'r
& 'VALOUT' , 'I-OCAf' ,'SEG;MENT' F 'POINTS'
& 'PIRFCr' , 'NDEX' , PROn(R' t 'SIZE'
9 'TERMS' , ITTERMS' , VALUE'/

C THIS SET OF TSTATEMENTS ARE FOR GUANi-TITIES OF TYPE REAL

DATA (NANI.IS(I)INN-TG+ICHAR+J ,HrHAR+NINTG+i4IREAL.S)
3 'ACCPAR' * 'TOL' P 'CO14FAC' Y 'SPAVAL'
I 'VALUES'/

C
C THIS F-IRSr SFT OF DAT'A VALUES FOR THE ARRAY NTKi IS FOR CHA~RACTER

65

C VARIABLES. ANY ADDITIONS OF CHARACTER VARIABLES SHOULD COME AT THE
C END. IN THF FVFNT AN ARRAY OF VARIABI.F S17E IS TO BE ADDED MAKE
C SURE THOSE ARRAY SIZES ARE ALWAYS AT THE END.
C
C THE SECOND SET IS FOR INTEGERS, NOTE THAT THE VARIABLE rIMENSIONED
C ARRAY SIZES ARE AT THE END UF THE INTEGER LIST.
C
C THE LAST GRCUP OF VALUFS ARE FOR REIAI. VARIABLES. AGAINT NOTE THAT
C THE VARIABLE DIMENSIONED ARRAY St7.LS ARE AT THE END OF THE REAL
C LIST.
C

DATA ND II/ 3, 1, 1, ., 1 , p,, IF IF It, Ii , 17, It IF 2I 1 ? i

, ~ ~ I I F I I F), 11, I F 1j, IF IF 1 1 IC
l~~~3, i, Xi, X, 1, 17 i, 1, X., X, 1, 1 ,.,

C
DATA NDIM2/ It 1i It 1i 1, 3v 1, IF IF XI It IF XI IF 2, IF It 3p

I , r, ., I, 1I / IF IF I It I 1, ICFX,
C

a 32 3, 3, 3, 3p1, I 3, , 3, 3, 3, 3, i It I I

I, , 1 , 1, I, F3 3, NVA.1IXNVAI-MX I1,
C

3 , 2, I, FIIMP3/
C
C THESE ARRAYS USED BY THE PARSER FOR POINTNG TO A MEMORY LOCATION.
C

DATA CPOS/ IF 2y 3p,4p St 6p ,OX,22,41,6XRXO
I 23t24i25i26,?27i28,29,30p31 32,33,34,35/

C
DATA IPOS/ 1, 4p 7,10,13,14,15,15,18,8, I, 4,21,24,25,26,27,28,
& 31,32,33,34,35,38,41,yIIPX ,27/

C
DATA RPOS/ I, 2, 3, 4p 5/

C
C
C
C THESE STATEMENTS ARE ADDITIONS, 070?88 <9us AM>
C

DATA UP/ 2147483644 / , DOWN/ 2147483645 /
C

DATA RSTART/ 2147483646 /
C

DATA OPTIMIJM/2147483647.1/ , EXTRAP/2147483647..X/
C

DATA CDATA/ 'UP' P 'DOWN' , 'RESTART' , 'OPTTMUM' , 'EXTRAP' /
C

C

DATA PLINES/ I / , PIECHO/ 0 / , PINL/ 1 / , PI.S/ I1 / , PI.T/ 1 /,
S PNI./X1/ , PN.J/X/

C

C

C

66

C

0THE FOL1LOWING LItNES REFfL.ACE T14E LIE *READ 1NPI)TI. l HhsF iUNES Ci'UL
C THE~ NAME.I8T INPUT ENIJLATOP. MOTF THhT MH tIE 'PPOMPTI

%,SETS LIP A PROMPT FOR THE INTFR.ACTIVE US~ER.

FRMPT =PRMPT +
NOS =C.

C
IF(IBATCH EQt. 0) t;AIJ. PROMiPTC PRIIPT)

C NOW RFAB IN THE 10PPUT STRING AND DETERiiLtRF TFr STS TOO i.ONS.

1 -- rCJNTINLIE

CALL RDSTRC7% STRING 7 L.CT 9RFADFL. r ST.NO ISTRN6 r ISTAT

C

C PASS THE CHARATER STRING 'STRING' TO THE~ PARSER AND PARSE THE INP'UIS.

CALL PARSER(TIGHI.T1)NMIDi.NIICrNGR
3 REALSYCDATAYIDATPRDAT Y CPOS Y XPOS sRPOS i NVARY

I NCHAR ,NINTG t NREALS HCYAl- RIVAl- NRVAI
I NTIA 7IMAT Y NRDAT r NDS 7 PU.IES Y PINt.P

9 PITEXT P PIECHI Y P1.9 t PlT PNI. iPNJ 9 PIEGIJAI.
a PNIJN ISTAT

IF (ISTAT *EQ. 1) G TO 100

C

IF(NDS *Efl. 0 60G TO 1?9

67

Appendix B

GENERALIZED PARSER/NAMELIST INPUT EMULATOR LISTING

68

SUBROUTINE RDSTRG(STRING r LCT IREAD , NSTRNG I ISTRNG ISTAT)
CHARACTER*(*) STRING

C
IF(IREAD EG. 1) THEN
READ(2?999) STRING

ELSE
READ(5,999) STRING

ENDIF

LCT = ILEN(STRING P ISTRNG
C

IF(L.CT .GT. NSTRNG) THEN
LST = LCT - NSTRNG
PRINT g,' ERROR - TOO MANY CHARACTFRS IN THIS LINE
PRINT *y STRING(t:LCT)
PRINT *s' SHORTEN LINE BY APPROXIMATI.Y '"i.STF' CHARACTRS."
PRINT *W'
ISTAT = 1
RETURN

ENI F
C
999 FORMAT(A)

C
RETURN
END

69

SUBROUTINE PARSER(STRING NALSTNAMLISPNDIM:INDIM.?PXCHR t INTGR,

I REAL.SCDATA , IDAT , RDAT r CPOS , IPOS , RPOSY

& NVAR t NCHAR 9 NINT6 , NREALS Y NCVAI r NIVAL t

s NRVAL, v NDAT i NIDAT , NRDAT , NDS , . , INI. r

FA ITEXT r IECHO p I.S r I.T , NI. , NJ t IEIUAL i

NUM Y tSTAT)

C

C

C THESE STATEMENTS USED FOR PARSING. 070988 <411c AM>

C THE FOLLOWINO IS A DESCRIPTION OF THE VARIABLES USED FOR PARSING:

C
C STRING - INPUT CARACTER lINE;PASSED TO THE PARSFR FOR

C PARSING.
C
c NAMLST - CONTAINS THE NAME OF THF NAMELIST.

C
C NANL IS - CHARACTER ARRAY DIMENSIONED TO THE NUMBER OF

C VARIABLES IN THE NAMELIST (NVAR) AND WHICH

C CONTAINS THE LIST OF INPUT ITEMS IN NAMEI.IST.

C THIS ARRAY IS ORGANITZED WITH INPUT ITEMS OF TYPE

C CHARACTER FIRST , INTEGER SECOND , AND RFAI.S LAST,

C
C ICHR - CHARACTER ARRAY WHICH HOLDS THE VALUES FOR THE

C INPUT ITEMS OF TYPE CHARACTER. THIS ARRAY IS THEN

C EaUIVALENCED TO THE APPROPRIATE VARTABI.-F.So THIS

C ARRAY IS DIMENSIONED TO THE NUMBER OF CHARACTER

C VALUES (NCVAL.

C
C INTOR - INTEGER ARRAY WHICH HOI. DS INTEGER VAI.UES FOR THE

C INPUT ITEMS OF TYPE INTEGER, THIS ARRAY IS THEN

C EQUIVALENCED TO THE PROPER INTEGER VARIABLES.

C INTGR IS DIMENSIONED TO THE NUMBER OF INTEGER

C VALUES (NIVAL) IN NAMLIS.

C
C REALS - REAL. ARRAY WHICH HOl.DS REAL VAI.UES FOR THE IN'UT

C ITEMS OF TYPE REAl.. IT THEN IS EQUIVALENCED TO THE

C APPROPRIATE VARIABI.ES, THE ARRAY REAL IS DIMENSIONED

C TO THE NUMBER OF REAL VALUES (NRVAL) IN NAMLIS.

C
C NDIMI I NDIM2 - ARRAYS CONTAINING THE I.OWER I UPPER BOUNDS

C RESPECTIVEL.Y, OF EACH OF THE VARIABLES IN NAMLIS IN

C THE ORDER OF CHARACTER FIRST, INTEGER SECOND , AND

C REAL AS LAST, NDIMI AND NDIM2 ARE DIMENSIONED BY THE

C THE TOTA. NUMBER OF VARIABLES IN NAMELIS NVAR).

C
C NCHAR - NUMBER OF CHARACTER VARIABLES
C

C NINTO - NUMBER OF INTEGER VARIABLES

C
C NRFAL.S - NUMBER OF RFAL VARIABLES

C
C >>>NOTE: NVAR = NCHAR + NINTG + NREALS<<<<<-<

C
C
C THE FOLLOWING ARRAYS ARE USED WHEN CHARACTER

INFORMATION IS PASSED

C IN INTEGER OR REAL VARTABLES(IN THE INPijr) INSTEAD OF INTEGER

d OR REAL VALUES, THIS IS USEFLI1. IN THAT IT Al.LOWS THE USER SOME

C FL.EXIBIL.ITYA.e.p THE USER DOES NOT HAVE TO SUPPLY THE APPRO-

C PRIATE VALUES (INTEGER OR REAL.) BUT CAN INPUT SAY 'FIRST'v

C 'LAST'p OR 'SAME'(OR WHATEVER, AS DESCRIBED BY THE USERS MANUAL -

70

C 'PROGRAM EAGLE - USERS MANUAL VOLUME I1' BY DR. JOE F. THOMPSON
C MISS. STATE UNIV , DEPT OF AEROSPACE ENGINEERING ? MS).
C
C
C CDATA - C4ARACTER ARRAY CONTAINING THE NAMES OF CONSTANTS.
C THIS ARRAY SS DIiIENSIONED TO THE NUMBER OF
C INTEGER AND REAL CONSTANTS(NIPAT),
C
C IDAT - INTEGER ARRAY CONTAINING INTEGER CONSTANTS
C INITIALIZED YY THE MAIN PROGRAM. THE ARRAY IS
C EOUIVALENCED TO THE APPROPRIATE VAI.UES. IDAT IS
C DIMENSIONEP! BY THE NIJM)3ER O3F INTEGER VALUES .ii1
C 'COMMON/ CONST / ... '(NIDAT).

C RDAT - REAL ARRAY CONTAINING INTFGFR CONSTANTS TITIAi. IZDF
C IN THE MAIN PROGRAM. THIS ARRAY IS EOUIVALENCED TO
C THE APPROPRAITE VALUES AND IS DIMENSIONED TO THE
C NUMBER OF REAL Vt'LUES IN 'COMMON/ CONST / ...
C (NRDAT).
C >.>>>>>,NOTr: - NDAT = NIDAT + NRDAT -
C

C CPOS - INTEGER ARRAY WHICH HOLDS THE ACTUAL ARRAY PCSITIONS
C OF ALL THE NAMELIST INPUT VARIABLES OF TYPE
C CHARACTER. CPOS ACTS AS A POINTER FOR THE PARSER.
C
C IPOS - INTEGER ARRAY WHICH HOLDS THE AL oAL ARRAY POSITIONS
C OF ALL THE NAMELIST INPUT VARIABLES OF TYPE INTEGER.
C IPOS ACTS AS A POINTER FOR THE PARSER.
C
C RPOS - INTEGER ARRAY WHICH HOLDS THE ACTUAL ARRAY POSITIONS
C OF ALL THE NAMELIST INPUT VARIABL.ES OF TYPE REAL.
C RPOS ACTS AS A POINTER FOR THE PARSER,
C
C.4.0 1....,o
C
C OTHER ADDITIONS:
C
C ISTAT - STATUS FL.AG. 'ISTAT = 0' NO ERRORS;*ISTAT = I'
C INPICATES AN ERROR. IT WILL PROMPT THE USER IN
C INTERACTIVE MODEOTHERWISE, EXECUTION WI1.. STOP,
C

C

C
C

CHARACTER*(*) NAMLST , NAMLIS , CDATA
CHARACTER* 44 TEXT
CHARACTER*(*) STRING
CHARACTER*(*) ICHR

C
1NTEGER CPOS , IFOS RPOS r POINTR

C
PARAMETER(NTEXT = 144)

C

mIMENSION ICHR(NCVAL.) r INTGR(NIVAt) , R.AL.S(NKVA.)
DIMENSION NAMI.XS(NYAR) , NDIMt(NVAR) , NDIM2(NYAR)
bIMENSION CDATA(NPAT) r IDAT(NIDAT) , RDAT(NRSAT)
Pi.-NSION CPOS(NCHAR) , IPOS(NINTO) , RPOS(NREALS)

C

71

C
ICO = ICHAR(''
£C = ICHAR('?')
!CA = I:HAR('A')
,rCZ = ICHAR(Z')
ICOU = ZCHAR(....)
ICCM = ECHAR(' 1
ICFOS ICHAR(I
iCHIN ICHAR(-')
ICPER = ICHAR('.')

IPAREN = 0
IPOINT = I

LNL r IL.EN(NAMLST B
N. = .NL. + 2

C

DO I I = INTEXT
I TEXTC t:I)= '

C
ISTRNG = LEN(STRING
LC = ILEN(STRING , ISTRNG)

C
IF(STRING(1.l) NE. * ') THEN

C
IF(STRING(Ji'l) E.G 'C') THEN

C
PRINT *, STRING(ii.C I
PRINT W'
GO TO 9999

C
ELSE LF(STRING(1:1) .C. 'E' *AND# 1. .R, 1 THEN

C
PRINT *r STRING(1?LC
PRINT *,' '
IECHO = I

C
ELSE IFN L ..EQ 1 THEN

C
PRINT ,' ERROR - COLUMN I MUST EITHER BE BLANKi HAVE A 't

& '<C> OR AN <E>
PRINT *,'
ISTAT = 1
GO TO 9999

C
ELSE

C
PRINT *,' ERROR - COLUMN I MUST PF BI.ANK
PRINT W,' -
ISTAT = 1
GO TO 9999,

C
ENPIF

C
ELSE IF(STRING(1:1 F GRC. ' - *AND. IRCHO .C. E I THEN

C
PRINT *, STRING(1:L.C
PRINT *'

C
ENDIF

72

C
IF(L ,EG. I) THEN

C
IF(STRING(2:2) *NFo '$) THEN

PRINT *,' ERROR - DOLLAR SIGN REIJIRFD IN COLUMN 2
PRINT *P'
ISrAT = 1
GO TO 9999

ENDIF
C

NDS = INDEX(STRING(3:LC) '')
C

IF(NDlS NE. 0) NDS = NDS + 2
C

NOS = INDEX(STRING(2:L.C) , 'S
IF(NOS *NE. 0) NDS NOS + 1

C

ENDIF
C

IF(NDS *EQ. 0) THEN
C

LS = LC
C

ELSE
C

LS = NDS
C

ENDIF
C
C TEST TO SEE IF THE PROPER NAME OF THE NAHELIST IS FOUND IN THE
C STRING IN THE RIGHT PLACE.
C

IF(L *EQ, 1) THEN

IF(STRING(3:NL) .NE. NAMILST) THEN
PRINT *,' ERROP - ',NAMI.ST,' NOT FOUND BETWEEN COLUMNS 3 THRU',

NLP ', STRING(1'XNL
PRINT *,'
ISTAT = 1
GO TO 9999

ENDIF
C
C TEST TO SEE IF A BLANK EXISTS AFTER NAMLST IN STRING.
C

IF(STRING(Nt.+I:NL+l) *NE* ' ') THEN
PRINT *,' ERROR - COLUMN AFTER 'PNAMLST,' MUST BE BLANK *',

I STRING(I:NL.+)
PRINT *,' '
ISTAT = 1
GO TO 9999

ENDIF
C
C SET STRING POINTER(NL) TO PROPFR POSITION FOR THE PARSER
C

NL = NL + 2
C

ELSE
C

NL = 2

73

C
ENDIF

10 CONTINUE
C

C THIS SECTION PUTS TOGETHER A STRING OF CHARACTERS TO FORM A
C QUANTITY TO BE LATER DETERMINED IF THE QUANTITY IS IN THE
C LIST NAMLIS.
C

DO 20 I = NLFLS
C
C TEST TO SEE IF ANY LEADING BLANKS FXIST;IF SO INCREMENT
U

IF(STRING(1:1) .E . ' " UAN. TEXT(1:1) .EQ. " ' 630 TO ?0

IF(STRING(I:) .Q. '$' .AND. i *FG. LS) THEN

C
IF(TEXT(1:1) .NE, ' ") THEN

PRINT *P' ERROR - NOT FINISH READING THE QUANTITY WHEN '
'INPUT L.tNE WAS TERMINATED 'STRING(LS-7:LS

ISTAT = 1
GO TO 9999

ELSE
GO TO 9999

ENDIF
C

ENDIF
C

ICHS = ICHAR(STRING(T:1))
C
C TEST TO SEE IF THE CHARACTER STRING STARTS WITH AN INTEGER? IF SO
C THEN ITS AN ERROR.
C

IF(L .EQ. 1) THEN
C

IF((ICHS *GE. ICO .AND. ICHS *I.E. IC9) *AND. TEXT(1:1) .EQ. "

aTHEN
PRINT *,'ERROR - QUANTITY CANNOT START WITH A NUMIBER '?

a STRING(1:t+7)
PRINT *'
ISTAT = 1
GO TO 9999

ENDIF

ELSE IF(((ICHS *GE. ICO GAND. ICHS .LE, IC9) *OR.

A ICHS .EQ. IC0J ,OR. ICHS .EU. ICCM oOR*
3 ICHS .EO, ICPOS ,OR. XCHS *EQ. ICMIN .OR.
I ICHS .E0. ICPER) *AND. TEXT1:1) .Fn. ' ") THEN

C
IEGUAL = 1
NL = I
GO TO 210

c
ENDIF

C
C FIRST TEST TO SEE IF THE CHARACTER STRING(1:1) IS PFTWFFN 0->9
C AN4D A->Z IF SO CONCATENATE, IF NOT THEN TEST TO SEE XF AN EMBBEDDED
C OR A TRAILING BLANK EXISTS.IF SO CONCATONAT. IF NOT THEN TFST TO
C SEE IF THF QUANTITY STARTS WITH A SYMPOL.IF 811 - ERROR. IF NOT
C THEN DETERMINE IF ANY CHARACTFR FOLLOWS THE OANTITY TO TERMINATE

74

C SEARCH AND CONCATENATION.

C
IF((TCHS *GE. ICO ANP, ICHS *I.E. IC?) *OR.

I (ICHS .GF. ICA .AND. ICHS .LE. [CZ)) THEN
C

IF(TFXT(I:i) .E(. ' ") THEN
rEXT(1:1 STRING(TIl)

IL = I
ELSE

TEXT = TEXT(J*iL.)//STRING(1:1
IL = It. + 1

ENDIF
C

ELSE IF(STR:NG(I;!) En. ' 'AND. TEXT(1:1 ..NF. ' ') THEN
C

TEXT = TEXT(1:xi.)//STRINGC i:T
IL = Ut. + 1

ELSE IF(STRING(I:I) EQ. '(' *ORo STRING(I: ! .Et- 'l.
3 THEN

C
IF(XPAREN #EQ# 0) THEN

C
IF(STRING(1:1) *EQ. '(')THEN

TEXT = TEXT(I;IL)//STRING(I:T
IL = IL + 1
IPAREN = IPAREN + 1

ELSE IF(STRING(1:) .EQ.)') THEN
PRINT W,' ERROR - MISSING L.EFT PARAENTHESIS ',

& STRING(I-9:1)
PRINT * "
ISTAT = I
GO TO 9999

ENDIF
C

ELSE IF(iPAREN .Ea. I)THEN
C

IF(STRING(I:I) FG. "(") THEN

PRINT W" ERROR - MISSING RIGHT PARENTHESI ',
STRING(1-9:-i)

PRINT ,'

ISTAT = 1
GO TO 997Y

ELSE IF(STRING(I:I) ,EQ. ')')THEN
TEXT = TEXT(1:TI.)//STRING(1:1
IL = IL + 1
IPAREN = IPAREN + 1

ENDIF
C

ELSE
C

PRINT *,' ERROR - POSSIBLY TOO MANY PARENTHESIS ,

z STRING(T-9:1)
PRINT *,
ISTAT = I
GO TO 9999

C
EN01 F

C
ELSE JF(STRING(I:1) .NE. ' .AND. TEXT(1:1) .G. ') THEN

C

75

i(STRING(iI:) *NF. ',') THEN

PRINT *P' ERROR - QUANTITY STARTING WITH A SYMBOL "i
STRING(1:1+7

PRINT *,'
ISTAT = 1
GO TO 9999

ENDIF
C

ELSE
IF(STRING(1:1) .NF. ' ',AND. TEXT(.1) .HE. ") GO TO 30

ENDIF
C
20 CONTINUE

C
IF(NBS .FQ. 0) THE"I
L = L + 1
GO TO 9999

30 EIF
C

30 X,' '-NUE
C

C SET PC!- "ER TO LAST POSITION WHICH IS WHERE THE NEXT CHARACTER
C BEGIN-(MOST LIKELY AN EQUAL SIGN).
C

NL = I
LT = ILEN(TEXTNTEXT)

C
C AFTER FINDING PARENTHESIS THIS INDICATES THAT AN ARRAY ELEMENT IS
C BEING SPECIFIED. THEREFORECONVERT THE CHARACTER STRING WITHIN THE
C PARENTHESIS TO AN INTEGER NUMBER.
C

IF(IPAREN .EQ. 0) GO TO 35
C

IF(IPAREN .NE, 2) THEN
PRINT *,' ERROR - PARENTHESIS MISSING IN THE STRING '?TFXT(:I.T)
PRINT *r'
ISTAT = 1
GO TO 9999

ELSE
CALL ELEMNT(TEXT(I-:LT) , L.T , IPOINT , ISTAT
IF(ISTAT ,11E. 0) GO TO 9999
IPAREN = 0

ENDIF
C
35 CONTINUE

C
C DETERMINE WETHER ANY BLANKS EMBEDDED WITHIN THE QUANTITY. IF SO
C THEN ITS AN ERROR,
C

N = INDEX(TEXT(1:LT) ," ")
C

IF(N . lE. 0) THEN
PRINT *,' ERROR - CAN NOT HAVE BLANKS EMBEDDED WXTHIN1 THE HAME',

2TEXT(1:L,T
PRINT *,'
ISTAT = 1
GO TO 9999

ENDIF
C
C SEARCH FOR THE QUANTITY IN THE LIST HAML.IS. IF NOT FOUND - FRROR
U7

76

DO 100 I = ItNVAR
IF(TEXT(1:LT) *EQ, NAMLIS(I)) GO TO 200

100 CONTINUE
C

PRINT *P' ERROR - COUW.IJ NOT FIND 'iTEXT(JiLT)v' < 1H NAHEI.IST •
PRINT *,'
1STAT = 1
GO TO 9999

C

200 CONTINUE
C

INL = I
IE0UAL = 0
NUM = 0
ITEXT = 0

C

IF(IPOINT I.E. NPIM2(INL) oAND° IPOINT GE. NY)gi (NI
THEN

1TEXT = IPOINT - NDIM1C IN)
IPOINT = 1

C
ELSE

C
PRINT *,' ERROR - SPECIFIED ARRAY ELEMENT OUT OF BOUNDS ''

I 'FOR THE ARRAY 'PNAMLI(XNL) P' .'
PRINT *,' THE LOWER AND UPPER BOUNDS ARE

I NDIMI(INt.) , ;DIN2(INI.)
PRINT *t' CHANGE THE ARRAY ELEMENT 'PIPOINTt' TO FIT',

WITHIN THE SPECIFIED LIMITS.
ISTAT = 1
GO TO 9999

C
ENDIF

C

C FIND THE CHARACTERYINTEGFR OR REAL STRJNG AND STORE IN THE
C APPROPRIATE LOCATION TO BE LATER USED BY THE M4AIN ROUTINE.
C
210 CONTINUE

C
NJ = ISIZ(NDIMI(TNL) r NDIM2(INL))

C
NTCI = NCHAR + NINTG

C
IF(IN. ,LE. NCHAR) THEN

C
POINTR = CPOS(INL.
CALL FNDCHR(STRINCICHRC POINTR),XTEXTLsLr,NI.NJIFflUAI.

INIJMISTAT

C
IF(ISTAT *EQ. I) GO TO 9999

ELSE IF(IN[. *GTs NCHAR .AND, INL ,IF. NTCI) THEN
C

II = INL - NCHAR
POINTR = IPOS(I1)
CALL FNDINT(STRING , IHTGR(POINrR) P CPATA , PAT F NDA7,

4 NIDAT r ITEXT Y LS o LT Y NI. 1 NJ P IEQUAL
HUM STAT

C
IF(ISTAT .EO, 1) GO TO 9999

C

77

ELSE IF(lNL. .GT. NTCI) THEN
C

II = INL - NTCI
POINTR = RPOS(II
CALL FNDRL.(STRING , REALS(POINTR) , CBATA ik'DAT tNDAT

NRDAT , ITEXT p LS , (.T , NI. t NJ P IEQUAI.
S HUM , ISTAT

L
IF(ISTAT *EG. 1) GO TO 99?9

C
ENDIF

C
C IF THE POINTER IS AT THE END OF THE INPUT STRING i.t., THE PARSING
C OF THF INPUT STRING HAS PEEN COMPLETED THEN GO TO 7?99 TO THE MAIN
C ROUTINE, OTHERWISEY 60 TO ? ? TO THE Sr{iJNJNG AND SEARCH FOR THF
C AEXT QUANITITY, ETC.
C

DO 215 1 = lpNTEXT
215 TEXT(1:i) =

C
IF (NL .LT. .S) 60 TO 10

C
C*.o,****..*** * *o*

C
C IF THE SECOND DOLLAR SIGN WAS NOT FOUND THEN INCREMENT THE LINE
C COJNTER('Lk). OTHERWISEY RESET THE LINE COUNTER TO ONE(l) AND THE
C ECHO PARAMETER TO ZERO(O).

C
IF(NDS *Egi, 0) THEN

L=L+i

RETURN
ENDIF

C
F799 CONTINUE

C
L=1
IECHO = 0
ITEXT = 0

C
RETURN
END

78

SUBROUTINE FNDCHR(STRING P IC F ITEXT P LS , L.T P L r NJ
IEQUAL P NUM r ISTAT

C
C THIS SUBROUTINE FINDS A CHARACTER VALUE AND STORES IT IN THE
C APPROPRIATE ARRAY("C)V
C
C INPUT:
C
C STRING - CHARACTER STRING OF LENGTH 'LS'.
C
C LS - LENGTH OF CHARACTER STRING.
C
C LT - LENGTH OF THE QUANTITY WHICH IS FtUIVAI.ECED TO THF
C ARRAY 'CI,
C
C iC - CHARACTER ARRAY CONTAINING THE INPUT CHARACTER VAl.UE,
C DIMENSIONED TO 'N.J.
C
C L - POINTER IN THE STRING 'STRING', AT THE END OF THE
C ROUTINE IT'S UPDATED TO RETURN THE NEW POSITION.
C
C NJ - DIMENSION OF THE ARRAY IC
C

C
CHARACTER(*) STRING , IC
CHARACTER*20 TEXT

C
PARAMETER(NTEXT = 20

C
DIMENSION IC(N.J)

C

C
ICO = ICHAR('0'
IC? = ICHAR('9'

C
DO 5 I = lNTEXT

5 TEXT(:I "
C

102 = 0
C

IL = L - LT - 1
C
10 CONTINUE

C
DO 100 I = LLS

C
C CHECK FOR BLANKS. IF SO - INCREMENT.
C

IF(STRING(1:1) ,1: , ' ' GO TO I00
C
C LOOK FOR AN EOUAL SIGN AFTi TfHS rUANTITY. IF OT THERE OR OiH
C CHARACTER IS THERF<(XC.IJrizw 91.AfKS) TH%N I''S AN ERROR.
C

IF(STRING(.: 1:1 .E. "=) 'fHEN
IEVIIAL I
*O TO 100

E tiIF

:19

C
C IF EQUAL SIGN FOUND THEN NOW SEARCH AND FIND THF CHARACTER NFEDFD FOR
C THE INPUT.
C

IF(IEUIUAL E. I) THEN
C
C IF A COMMA FOLLOWS AN EQUAL SIGN THEN IT'S AN ERROR.
C

IF(STRING(1:1) .EQ. ') THEN
IF(ITEXT .EQ. 0) THEN

PRINT *y' ERROR - COMMA IN WRONG POSITION ,
3 STRING(IL:I)y' <-'

PRINT :*y'
ISTAT = 1
RETURN

ENDtIF
GO TO 100

ENDIF
C

IF(STRJNG(1:1) .EQ. '$) THEN
C

IF(ITEXT ,EQ. 0) THEN
PRINT *,' ERROR - DOLLAR SIGN IN WRONG POSITION ,

2 STRING(It.:I),'<-'
PRINT *,' "
ISTAT = 1
RETURN

ENDIF
C

L=I
RETURN

C
ENDIF

C
C CHECK FOR A QUOTE - INDICATFS CHARACTER VALUE AHEAD AND FIND THE
C CHARACTER STRING USING ROUTINE "CHRVAL.
.C

ICHS = ICHAR(STRING(I:i))
C

IF(STRING(I:) .En# '''')THEN

CALL CHRVAL(STRING , I v LS , IQ2 , ISTAT
IF(ISTAT .EQ, 1) RCTURN

C
ML =I12 - T - 1

C NUM = 0 INDICATES THAT THE CHARACTER VALUE WIL.L NOT BE MUI.TIPI.IED BY
C AN INTEGER. THERFORE, CHARACTER VALUES WSLL BE EXPECTED.
C

IF(NUM *EQ. 0) THEN
ITEXT = ITEXT + I

C
C ITEXT COUNTS THE NUMBER OF CHARCATER VALUES. IF ITS GREATFR THAU THE
C SPF.CIFU!J TAIMENSION OF THE ARRAY THEN IT'S AN ERROR,
C

IF(ITFXT .GT. NJ) THEN
PRINT :9," ERROR - TOO MANY VALUES FOR ',STRING(1.2L
PRINT *,'
ISTAT = 1
RETURN

ENDIF

80

!C(IT?'XT) = STRING(1+1:.,n2-1)

ELSE

DO 7; J ITXTOrTTEXT
IC% , - STRING(T+t:I02-t)

20 CONTINUE
C

NUM = 0
END.TF

C SET RF, POINTER POSITION WITHIN "STRING' iND GO SACK TO THE F'1INN.IG

L 1
GU) TO 10

C DETFRMINE .F A CHARACTER STRTNG IS PRECEFEr .Y AN INTEGER ANl A
1; MULTIPLICITION SIGN INDICATTNG THAT THE CHARACTER VALUE WILL FE
C STORED IN THE ARRAY 'IC' THE AMOUNT GIVEN BY THE INTEGER.
C

ELSE IF(ICHS *GE. ICO .AND. ICHS *I.E. If?) THEN
C

IF(TEXT(.1:.1 E.EO ')lHF

TEXT(1:1) STRING(1:1)
JL - 1

ELSE
TEXT = TEXT(1:.JL)//STRING({ I:1
JI. - ,.L + 1

ENDIF
C

ELSE IF(STRING(I:;) .EQ. ') THEN
C

IF(TEXT(1:1) .Eq. " ') THEN
PRINT *,' ERROR - NEED 6N INTEGER ro MULTIPLY "

'CHARACTER VALUE '.,STRING(Il.;1?); K-"
PRINT *,'
ISTAT = 1
RETURN

ELSE
CALL. CONVER(TEXT(1:,)L V VAR , ISTAT)
IF(ISTAT *EU. I) RETURN

C
1TXTO = ITEXT + 1
ITEXT = !TEXT + INT(VAR)

IF(ITEXT GT. N.) IHFN
PRINT *P' ERROR- TOO ltNY VALUES FOR "tSTRINGII+'?
PRINT 'K"'
ISTAT = I
RETURN

ENDIF
C

HUM = 1
C

00 5 , - XNTEXT
s0 TEXT(,1..) =

C

ENDI1F

ELSE !F(TEXT(14.t, ,NE, " ' ,AND. SrRxINGS T:- 1'4F THF.'

81

PRINT *,' WARNING - POSXILE ERROR ',STRIN4G(IL:X),'
PRTNT *i'

L = I

RETURN

ELSE

IF(ITEXT *I.F, NJ) THEN
L = I

ENrJiF
C

END IF
C

ELSE
C

PRINT *t' ERROR - WRONG CHARACTER OR EU.IL SIGN il"SING ',
,STRING(It..:!+!

PRINT *,' '
ISTAT I
RETURN

c
ENDIF

C

100 CONTINUE
c

L =LS

RETURN
END

82

SUBROUTINE FNDINT(STRING , IC , CDATA IDAT , NPAT r NIDAT
& TTEXT LS LT P L , NJ , IEQUAL. NIUM
a ISTAT

C
C THIS SUBROUTINE FINDS AN INTEGER VALUE FROM THE INPUT CHARACTER
C STRING 'STRING'# THIS ROUTINE AI.LOWS THE USER TO SPECIFY
C ALPHANUMERIC CHARACTERS FOR THE QUANTITY WHICH WILL THEN RE
C CONVFRT7D TO UNIQUE INTEGER VAL.UES.THIS PART IS ACCOMPI. SHE0 IN
C SUBROUTINE CCI°
C
C INPUT/OUTPUT:
C
C STRING - CHARACTER VARIABLE OF LENTH 'I.5' CONTAINfIG THE
C INFUT CHARACTER STRTNG.
C
C LS - LENGTH OF CHARACTER STRING.
C
C LTEXT - LENTGHT OF THE QUANTITY WHICH IS ERUIVALEN' TO TRF
C ARRAY 'IC'.
C
C IC - INTEGER ARRAY CONTAINING THE APPROPRIATE VAI.UES FOR
C THE SPECIFIED QUANTITY.
C
C L - POINTER IN THE STRING 'STRING', AT THE FN OF TFE
C ROUTINE 'k.' IS UPDATED TO RETURN THE NEW POStTIONo
C

C NJ - DIMENSION OF THE ARRAY 4 IC'.
C
C CDATA - CHARACTER ARRAY CONTAINTNG THE CHARACTER
C REPRESENTATION OF VARIOUS VALUrS.
C CDATA DIMENSIONED TO 'NDAT',
C
C IDAT - INTEGER ARRAY CONTAINING THE RESPECTVE IrTiW
C VALUES. DIMENSIONED TO "NIVAT',
C
C NDAT - TOTAL NUMBER OF VALUES(INTEGFR AD REALI 3N THE
C ARRAY *CBATA.*
C
C NIDAT - TOTAL NUMBER OF IMIEGFR VALUES !N THE A&RAY "ToAfT'
C

C

CHARACTER*(*) STRING ,r CDATA
CHARACYE.*20 TEXT

C
PARAMETER(HTEX =-20)

C
DIMENSION IC(NJ) , CDATA(NDAT IDAT(NIDAT

C

C***91******* **tA**?*gk:)ft* l~-*;**'px*:kkc,4;-"***Ac

DO 5 I = INTEXT
0~ TEXT(E.I)=

C

O' A CHAR('O"'8ZG CHAIR('?')
- IHS = I A '-' 3

- ICPS =ICHAR-(" ' 3
C-

- 83

IQ2 = 0
C

IL = L - LT -1
C
10 CONTINUE

C
DO 100 I = .,IS

IF(STRING(I:I) EO, 6') TO 100

IF(STRING(1:1) ,EO. '=") THEN
IEGUAL = I
GO TO 100

ENDIF
C
C IF THE EQUAL SIGN HAS BEEN FOUND THEN F;NP THE INTFGFR VALUES.
C

IF(IEGUAL. *EO. 1) THFN
C
C DETERMINE IF THE CHARACTER IS A NUMBER. IF SO, CONCATONATE.
C

ICHS = ICHAR(STRING(i:I)
C

IF((ICHS *GE# XCO #AND. ICHS .LE. IC9) #OR.
a ICHS .EQ. ICPS ,OR. ICHS *EO. ICMS) THEN

C
IF(TEXT(1:1) EO. t) THEN

TF"T(1:1 = STRING(,:l)
J. 1

ELSE
TEXT = TEXT(1;JL)//STRING(I:I
JL = JL + 1

ENDIF
C
C CHECK FOR COMMA# IF NOTHING IN TEXT - ERROR.OTHFRWISECONVERT STRING
C TO INTEGER.
C

ELSF IF(STRING(1:1) .EQ. ,' #OR. STRING(1:1) #EQ. '$'
THEN

C
IF(102 *EQ. 9999) THEN

C
102 = 0

C
IF(STRING(1:1) *EG. ",') GO TO 100
IF(STRING(1:1) ,EQ. '') THEN
L=I
RETURN

ENDIF
C

ENPIF
C

IF(TEXT(J:l) *E(. ' ' #AND. STRING(1:1) *RO. ,')
S THEN

PRINT ,' ERROR - NO VALUE FOUND PRIOR TO REACHING A ',
'COMMA 'YSTRING(Il.I)' -'

PRINT *,'
ISTAT = 1
RETURN

ENDIF

84

IF(TEXT(]]) .IEQ, .AND. STRING(I;I) . ' t
aTHEN

PRINT I, ERROR - NO VALIUE FOUND PRIOR T(O RE.CHING i ',
a; 'DOLLAR SIGN ',STRING(IL.:I /y' <-'

PRINT t'
ISTAT = I
RETURN

ENOIF
C

C NUM 0 INDICATES NO !ULTIPLICATION OF VALUE 'Y INTEGER.

IF(NUN oEO. 0) THEN

1-FXT = JTFXT "

IF(ITFXT .GT, NJ) THEU
rRINT ," ERROR - TOO MA'NY VALUES FOR r-TRING(T.U
PRINT W '
ISTAT = 1
RETU TR N

ENDIF
C

CALL CONVER(TEXT(1:JL) VAR .ISTAT
C

IF(ISTAT FGe. I) RETURN
C

ICC ITXT I = .NT(VAR
C

DO 20 J = .,NTEXr
20 TEXT ,:J ; =I

C
EL.SE

C
CAIL CONVER(iEXT(' UI , VAR 7 ISTAT 3

C
IF(TSTAT .E. 1 RETURN

C
IVAR = .%NT(VAR)

C
DO 30 J = rTXTOITEXT

SIC J) - VAR
30 CONTINUE

C

NUM r- 0
C

DO 40 J = INTEXT
40 TFXT(J.J) I

C

ENG F
C

C RESET POINTER AND GO TO ,EGINNING TO FXND ANOTHER ViX.LUF(. lF ANY
C

IF(STRTUG (i:1) ,F0. '" THEN
L = I
RC-TIRN

ENTIF

GQ TO 10
C

C IF ' -FOUND THEN CONVERT TeXT TO XUTEZGR AND M1I.TIF.LY BY THI UpCOHiNO

85

C VAIUE.
C

ELSE IF(STRINS(1:I) .EQ. ") THEN
IF(T.xr(x:i) .Ea. ' ') THEN

PRTNT W' ERROR - INTEGER REQUIRED " , STRING(If.:)p

PRINT :g "'
ISTAT = 1
RETURN

END EF
C

C

-" IN X(TEXT(:KL . -

iF(N *NF. 0) THFN
PRINT *K,' ERROR - CAN NT MULTIPLY FY NEGATIVE N.,FGER"

TEXT(I:K,)
PRINT *, " '
ISTAT = 1
RETURN

ENDIF
C

CALL. CONVER(TEXT(1:1I.) VAR , ISTAT)
C

IF(ISTAT .EQ. 1) RETURN
C

ITXTO = ITEXT + 1
ITEXT = ITENT + INT(VAR)

IF(TTEXT .GT. NI) THEN
PRINT ," ERROR - TOO MANY VALUES FOR 'PSTRING(lI.:I
PRINT W"
:STAT = 1
kETURN

ENDIF
C

NUM = 1
D0 60 = 2,NTEXT

60 TEXT(J:J)
C
C IF QUOTE FOUND THEN FIND THE CHARACTER VALUE COHVERT IT TO A UNIQUE
C NUMBER USING ROUTINE 'CCI'.
C

ELSE IF(STRING(IJ:) -EQ. '''") THEN
C

CAL.I. CHRVAL(STRING F I IS 1102 , ISTAT
C

IF(ISTAT *EQ. 1) RETURN
C

CAI... CC.I (STRING(I:X02) , VAR , CDATP ,I)AT r HDAT ,
NTRAT , I TAT)

C
IF(ISTAT .ER. I) RFTURN

C
IF(:lUIM Et. 0) tHEN

C
ITEXr = ITEXT + I

C
IF(ITEXT *GT. NJ 3 THEN

PRINT *i' ERROR - TOO MANY VALI.US FOFR ',,TRIUO 1L.(

86

PRIUT * '
ISTAT = 1
RETURN

ENDIF
C

IC(ITEXT) IVAR

ELSE
C

DO 80 = TTXTOPITFXT
IC(.) = IVAR

CONTINUE
C

ENDIF

L = IQ? + 1
i2= 9?9

C

GO TO J 0
C

ELSE IF(TEXT(1:1) oNF. " ' *AND. STRING(:.) IEo "- ') THEN

PRINT *Y' WARNING - POSSIBLE ERROR '"STRING(ll.: -
PRINT *7'

L x I
RETURN

C
ELSE

C
IF(ITEXT I.Eo NJ) THEN

L = I
RETURN

EN r, F

ENDIF

C
ELSE

C
PRINT *P' ERROR - WRONG CHA .RACTER OR EQUAL SIGN MISSING ,

STRING(IL?!),' <-'

PRINT *7'
ISTAT = 1
RETURN

C
ENDIF

100 CONTINUE
C

L = LS
C

RETURN
E14D

87

SUBROUTINE FNDRL(STRING v IC CDATA , RDAT i NDAT , NR"AT
I ITEXT , L.S L .T , I. p N.J r IEQUAL , NUM

ISTAT)

C
C THIS SUBROUTINE FINDS AN INTEGER VALUE FROM THE INFUT CHARACTER
C STRING "STRING'o THIS ROUTINE ALLOWS THE USER 'O SPECIFY
C ALPHANUMFRIC CHARACTERS FOR THE RUANTITY WHICH W11.1. THFN BE
C CONVERTFD TO UNIQUE INTFGER VALUES.THIS PART IS ACCOIMPLISHED IN
C SUBROUTINE CCI#
C
C INPUT/OUTPUT:
C
C STRING - CHARACTER VARIABLE OF LEUTH 'LS' COTAANJ.Ut" THE
C INPUT CHARACTER STRINI.
C
C LS - LENGTH OF CHARACTER STRING.
C
C LTEXT - LENTGHT OF THE OUANTITY WHICH IS EQUIVALEND TO THE
C ARRAY 'IC'.
C
C IC - INTEGER ARRAY CONTAINING THE APPROPRIATE VALUES FOR
C THE SPECIFIED QUANTITY.
C
C L - POINTER IN THE SIRING 'STRING*. AT THE END OF THE
C ROUTINE 'L" IS UPDATED TO RETURN THE NEW POSITION.
C
C NJ - DIMENSION OF THE ARRAY *IC'.
C
C CDATA - CHARACTER ARRAY CONTAINING THE CHARACTER
C REPRESENTATION OF VARI'OUS VALUES,
C CDATA DIMENSIO"ED TO 'NDAT*4
C
C RDAT - REAL. ARRAY CON:TAINING THE RESPE:TIVE REAL
C VALUES, DIMENStrONED TO "NRDAT',
C
C NDAT - TOTAL NUMBER OF VALUFS(INTEGER AND RK'AL. IN THE
C ARRAY "COATA,.
C
C NRDAT - TOTAL NUIMBER OF RFAI. VALUES IN THE ARRAY 'RDAI'.
C

C
CHARACTER*(*) STRING , CDATA
CHARACTER*20 TEXT

C
REAl. IC

C
PARAMETER(NTEXT = 20)

C
DIMENSION IC(NJ) , CDATA(NDAT) , RDAT(NRDAT

C

DO 5 1 = tNTEXT
5 TEXT(I:T)

C
ICO = ICHAR('0')
IC9 = TCHAR('9')
ICMS = ICHAR('-")

88

ICPS = TCHAR("+')
ICPER ICHARC '.'

102 0
C

IL = I - I.T - 1
C

10 CONTINUE

D~O 100 1I Ir..S
C

IF(STRING(1:i .EO.) GO TO 00
C

IEllli. = 1
GO TO 100

EN1IF
C
C IF THE EGUAL SIGN HAS BEFN FOUND THEN FIND THF REAL VALUES.
C

IF(IEOLIAL. *Fto 1) THEN
C
C DETERMINE IF THE CHARACTER IS A NUMBER, IF SO, DETERMINE WHFTHER IT'S
C A ZERO. IF SO, ERROR)OTHERWISE CONCATONATE.
C

ICHS ICHAR(STRING(1:1))

C
IF((ICHS #GE. ICO *AND. ICHS .E. IC) 4OR.

a ICHS .EQ. MCHS *OR. TCHS .EQ. ICPS *OR.
I ICHS .F.* ICPER) THEN

C
IF(TEXT(1:1) *EO, " ') THEN

TFXT(1:1) STRTNG(X:I
JL = 1

ELSE
TEXT = TEXT(:.I.)//STRING(1:1
Jl = JL +1

ENDIF
C
C CHECK FOR COMMAo IF NOTHING IN TEXT - ERROR.OTHERWISECONVERT STRING
C TO REAL.

C
ELSE IF(STRING(1:1) *EO, ',' .OR. STRING(x:.) .EO. '$'

THEN
C

IF(102 .Q. 9999) THEN
C

102 = 0
C

IF(STRING(I:I) Eg. '') GO TO 100
IF(STRING(I:1) .Ell. '$') THEN
L= I
RETURN

ENDIF
U

ENDIF
C

IF(TEXT(2:1) *FO . ' .AND# STRING{ (:1) *EO. 't'
9THEN

PRINT *,' ERROR - NO, VAI.E FOUND PRIOR TO REACHING A ,
a 'COMMA 'PSTRING(II.:I),' <-'

89

1STAT = 1
RETURN

ENOIF
c

IF(TEXT(.;1) .EQ. ' iW,.ND, STRINOC 1:3) #EO. 'S)
ITHEN

PR.NT W ERROR - MO VAIS FOJND PRIOR TO RECHING A

PRINT *9' '
I TAT = 1
RETURN

ENnIF
C
C NUM 0 INDIC.ATES NO MULTMPLSCAThN 07 'V'ALUE BY INTE~Ch.R.
C

rF, NUM EOQ. 0) THEN

ITEXT = ITEXT + 1
C

!F(ITEXT GT. N.) THEN
PRINT W,' ERROR - TOO MANY VALUES FOR 'STRIIG li.;!
PRINT *g'

1STAT = 1
RETURN

ENDIF
C

CALL CONVER(TEXT(1:J.) VAR j, ISTAT
C

IF(ISTAT *EQ. I) R'TURN

IC(.ITEXT) = VAR

DO 20 J = JINTrXT
20 TEXT(l:j) -

C

ELSE

CALI. CONVER(TEXT(1:,JL.) VAR F ISTAT)
C

IF(ISTAT EQ, I) RETURN
C

DO 30 J = ITXTOXTEXT

IC(J) = VAR
30 CnNTINUE

C
HUM = 0

C

DO 40 .1 lyNTEXT
40 TEXT(J:J =

C

END!F
C

C RESET POINTER ANn GO TO SEGINNING TO FTIU ANOTHER VA.UE(IF ANY
C

IF(STRTNO (1:I) EC. '3') THEN
L = I
RE TURN

ENrlIF
C

L = I + I
GO TO .tO

90

c

C IF "9' FOUND THEN CONVERT TEXT TO INTEGER AND MULTIPLY Y T-., IiF;OM.IN
C VALJE.
C

ELSE lF(STRING(I:I) *EOl. ':') THEN
IF.' TEXT(1:1) o-cn. ' ') THEN
PRINT :*Y' ERROR - INTEGER REQUIRED " STRING(11.'I '

PRINT *,'
ISTAT = 1

RETURN
E-DIF

KL = ILFH(TEXT ; NTcXT
C

IN3EX(TEXT IK.
C

IF- N .NE. 0) THEN
PRINT *,' ERROR - CAN NOT MILTIPI.Y BY NE5ATIVE INTEG. R ,

TEXT(1:1M.
PRINT *, ' '
ISTAT m 1
RETURN

ENDIF
C

N = INDEX(TEMXT(1:K.) ,
C

IF(N .NE. 0) THFN
PRINT W," ERROR - LOOKING FOR AN INTEGER N0 A REAl. ,

'NUMBER ', TEXT(I:KL.
PRINT W,
ISTAT m1
RETURN

ENDIF
C

CALL CONVER(TEXT(.:KL) VAR , ISTAT)
C

IF(ISTAT *EQ. I) RETURN
C

ITXTO = ITEXT + I
ITEXT = ITEXT + INT(VAR)

C
IF(ITEXT sGT. NJ) THFN
PRINT W, ERROR - TOO MANY VALUES FOR ',STRING(II.:I
PRINT '
ISTAT = I
RETURN

ENDIF
C

NUM = 1
C

DO 60 J = INTEXT
60 TEXT(,J:.) =

C
C IF GUOTF FOUND THEN FINDI THE CHARACTER VA..UF CONVERT IT TO A U.ITIPF

NhUMFMR USING ROIITITE "CCR'.

ELSE IF(STRING(1:I) ,. '''' 3 THEN

CAL..I. CHRVAL/ STRING , 1 r .S 9 I02 fISTAT
C

91

IF(ISTAT .EG. 1) RETURN
c

CA;.L CCR (STRING(i:Ih) VAR , CDATA 7R.6T r H307 r
NROAT , tSTAT)

C
IF" ITAT .E. I) RETURN

C
IF(HUM *E'. 0) THEN

C

ITF.XT = ITEXT + I
C

1=' !TEXT °IST. HJ THEN
PRIlT * ,' FRROR - TOO MA.NY VALUES FR ,.
PRINT *.' "
ISTAT = I
RETURN

ENDIF

IC(ITEXT) = VAR
C

ELSE
C

DO BO .1 = ITXTOITEXT
IC(,) VAR

80 CONTTNUE
C

NUM = 0
C

END IF
C

L - 102 + I
102 = 999?

C

GO TO 10
C

ELSE IF(TET(1:1) ,NE, A ' ¢ND. STR!NG(1:1 .NF. '.) TIH.N
C

PRINT h' WARNING - PO,,II.?E ERROR ';,STRING(Ii. U } '<-'
PRINT *"'

L = I

RETURN
C

ELSE
C

IF(ITEXT *LE. N.) THEN
L = I

" ETIIRN
ENJTTF

C

END I F
C

ELSE
C

PRINT l,' FRROR - WRONG CHARACTER OR .OUI. S£TGN Fl".il0 't

PRRINT ; ,"

ISTAT = I
RETURN

C
ENrIF

92

100 CONTINUE
C

L = LS
C

RETURN
ENDt

93

SUBROUTINE CHRVAL(STRING Y I L 1.S P T02 ISTAT
CHARACTER*(*) STRING

C
C THIS SUBROUTINE FINDS A CHARACTER VALLIE CHECKS IT AND MAKES SURE
C THAT IT IS CORRECT, IT RETURNS THE VALUE OF THE SECOND QUOTE.
C
Cn**************************nn*szsss sszs* sszrs*z*zs n s***** **z *
C

NC LS - 1
102 = INDEX(STRING(l+1:NC)

C
IF(102 .g 0) THFN

PRINT *'ERROR - MISSING SECOND QUOTE , STRING(:NC)

ISTAT 1
RETURN

ENDIF
C
C CHECK FOR EMBEDDED BLANKS WITHIN THE TWO QUOTES.
C

102 = 1d2 - I
C

N - INDEX(STRING(I:12) ' /

C
IF(N .NE. 0) THEN

PRINT K,' ERROR - CANNOT HAVE EMBEDDED BL.ANKS ,
'IN CHARACTER VALUES "

3 STRING(1:102) ' -'
ISTAT = 1
RETURN

ENDIF
C

RETURN
END

94

SUBROUTINE CONVER(TEXT r VAR v ISTAT

C
C THIS SUBROUTINE WILL CONVERT AN ANSI REPRESENTATION OF A NUMBER TO
C AN ACTUAL NIJMBER(INTEGER OR REAl. - EXCLUDING 'E' FORMAT).
C
C INPUT/OUTPUT:
C
C TEXT - CHARACTER STRING WITH IHE ANSI RFPRESENTATION OF A
C NUNBER
C
C VAR - ACTUAL NUMERICAL VALUE IFEING RFTURNED. IT CAU BE EITHER
C INTEGER OR REAL.. FOR THE MOMENT A REAL. NUMBER
C REPRESENTED RY 'E' FORMAT IS NOT AVAILABLE.
C
C ;>> NOTE: - THE ALGORITHM FOR THIS ROUTINE PROVIDED BY
C FRANK MANSFIELD OF NSWCYCA.
C

C
CHARACTER*(*) TEXT
INTEGER 0IGIT

C
VAR = 0.0

C
ICO = ICHAR('0')

C
N = LEN(TEXT

NT = ILEN(TEXT ?'N
C

DO 10 I =tPNT
C

IF(TEXT(I:1) EQ. ' ') 0 TO 10
C

IF(TEXT(1*1) ,E. '-') THEN
C

NSTR = I I 1
SIG = -1.0

C
ELSE IF(TEXT(1:1) oEQ, '+' THEN

C
NSTR = + + 1
SIG = 1.0

C
ELSE

C
NSrR = I
SIG : 1,0

C
ENDIF

C
GO TO 20

C
10 CONTINUE

C
PRINT *P' ERROR - NO CHARACTER STRING FOUND IH TEXT =',TEXT(.:NT
ISTAT = 1
RETURN

C
20 CONTINUE

C

95

NDEC = INDEX(TEXT(NSTR*NT) "

IF(NDEC .EO. 0) THEN
NVEC = NT+I

ELSE

NDEC = NDEC + NSTR - 1
ENDIF

C
TEN = 0.1

C
DO 100 T NDFC-1,NSTR,-I

C
DIGIT TCHAR(TEXT(I:1) - ICO

TEN =0.*TEN
VAR = VAR + TFN*DIGIT

C

100 CONTINUE
C

TEN = 1.0
C

00 200 1 = NECI+1,NT
C

DIGIT = ICHAR(TEXT(I:I)) - ICO
TEN = 0.1*TEN
VAR = VAR + TEN*DIGIT

C
200 CONTINUE

C

VAR = VAR*SIG
C

RETURN
END

96

SUBROuTINE CCI(TEXT , IVAR , CDATA , IDAT , NDAT , NIDAT , ISTAT)

C
C THIS SUBROUTINE CONVERTS CHARATER INFORMATION INTO LINIQUE INTE(GER
C VALUES BASE UPON THE ALLOWABLE INPUTS FOR THE DESIRED QUANTITY.
C

C
CHARACTER*(*) TEXT , CDATA

C
DIMENSION CDATA(NPAT) IDAT(NIDAT

C
N LEN(TEXT
NT 11-SW TEXT ?

c
DO 10 I z lNDAT

IF(TEXT(j+1:NT-1) #EQ. CDATA(I)) GO TO 20
10 CONTINUE

C
PRINT W,' ERROR - 'TFXT(I:NT), NOT FOUND IN CDATA ARRAY
ISTAT = 1
RETURN

C
20 CONTINUE

C
IF(I .GT, NIDAT) THEN

PRINT W' ERROR - TNCORRECT CHARACTER STRING o EXPECTING 'r
& 'ONE OF THEE '

PRINT *W(CDATA(J) YJ =.INIDAT
PRINT W," INSTEAD RECEIVED THIS ',TEXT(1:NT
ISTAT = 1
RETURN

ENDIF
C

IVAR = IDAT(I)
C

RETURN
END

97

SUBROUTINE CCR(TEXT , VAR , CDATA , RDAT , NDAT , NRnAT I XSTAT

C THIS SUBROUTINE CONVERTS CHARATER INFORMATION INTO UNIVUE REAL
C VALUES BASF.T, UPON THE AI..OWARLE INPUTS FOR THE DF.SIRE) QUANTITY.
C

C
CHARACTER*(*) TEXT r CDATA

C
DIMENSION CDATA(NDAT) , RDAT(NRTIAT

C
N = LEN(TEXT
NT II.EN(TEXT , N)

DO 10 I = lNDAT
IF(TEXT(1+1:NT-1 *FQ. CDATA(I)) GO TO 70

10 CONTINUE
C

PRINT *,' ERROR - ',TFXT(i:NT),' NOT FOUND IN CDATA ARRAY
ISTAT = 1
RETURN

C
20 CONTINUE'

C
NIDAT = NDAT - NRDAT
IF(I .t.E, NIDAT) THEN

C
N = NIDAT + 1
IF(NIDAT ,EQ, NDAT) N NDAT

C
PRINT W , ERROR - INCORRECT CHARACTER VALUE * EXPECTING r

I 'ONE OF THESE '
PRINT *t(CDATA(J) ,. -NPNDAT
PRINT *,' INSTEAD RECEIVED THIS ',TFXT(1NT
ISTAT = 1
RETURN

ENDIF

11 = I - NIDAT
VAR RDAT(II)

C
RETURN
END

98

SUBROUTINE ELEMNT(TEXT P LT t IVAR , ISTAT

C

C THIS ROUTINE CONVERTS A CHARACTER STRING WITHIN A SET OF PARENTHESIS
C TO AN INTEGER NUMBER INDICATING THE POSITION WITHIN THE SPECIFIED
C ARRAY.

C INPUT/OUTPUT:
C
C TEXT - CHARTACTER STRING CONTAINING THE ARRAY NAME AND
C THE ARRAY ELEMENT.
C
C LT - CHARACTER LENGTH OF THE VARIABLE.
C
C IVAR - INTEGER NUMBER (POSITIVE OR NEGATI:V) REING
C RETURNED TO THE CAI.LTENG ROUTINE. INDICATING THE
C ARRAY ELEMENT DESIRED.
C
C ISTAT - ERROR FI.AG ; 0 - NO ERROR; 1 - ERROR

*C

C
CHARACTER*(*) TEXT
CHARACTER*32 NUM

C
DO 1 1 = 1,32

1 NUM(I) =
C

ICO = ICHAR('0')
IC9 = ICHAR('9')

C
ICMIN = ICHAR('-')
ICPlS = ICHAR('+")

C
C LOCATE POSITION OF THE SET OF PARENTHESIS. THEN, 1ISF THESE VAI.UES
C IN THE DO I.OOP TO FIND THE CHARACTER STRING 'NUM' WHICH WILL THEN
C BE CONVERTED TO AN INTEGER VALUE 'IVAR'
C

NL z INDEX(TEXT 1 '(')
NR = INDEX(TEXT Y I)')

C
Lr = NL- I

C
DO 10 I N.+I 7 NR-1

C
ZF(TEXT(I:1) .Eno " ') GO TO 10

C
ICHS ICHAR(TEXT(I:I))

C
IF((ICHS *GE. ICO ,ANP. ICH .I.6# IC9) OR,

I ICHS D,. ICMIN *OR. ICH3 *EQ- ICPLS) THEN
C

IF(NUM(1:1) .EO. ' ') THEN
NUM(1:1) TEXT(1:1)
IN = 1

ELSE
NUN = HUM(1:lN)//TEXT(1:1
IN = IN + 1

ENDIF
C

ELSE

99

C
PRINT W, ERROR T NCORRECT CHARACTFR wx'rHXN PARENTHE:,IS.'p

a ICHECK 'pTEXT(1:1 W, <='
PRINT *,'

ISTAT = 1
RE TURN

C
ENDlIF

10 CONTINUE
C

CALL. CONVER(NUJM ,VAR ,ISTAT

C
IF(TSTAT *NE, 0)RETURN

IVAR = TNT(VAR)
C

RETURN
END

100

FUNCTION ILEN(TEXT , N
CHARACTER(*) TEXT

C
DO 100 1 = Nl,-l

IF(TEXT(ItI) *NF. ') GO TO 200
100 CONTINUE

C
ILEN = 0
PRINT *,' WARNING - POSSIBI.E ERROR. LENGTH OF TFX-T

'1 15 ZERO.'
RETURN

C
200 CONTINUE

C
ILEal = i

C
RETURN
END

FUNCTION ISIZ(Ni N2
C

ISIZ = 0
C

DO 10 I = NI , N2
ISIZ = ISIZ + 1

10 CONTINUE
C

RETURN
END

101

